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Abstract

For various reasons insertion devices (IDs) in storage

ring light sources generally produce small dipole pertur-

bations on the stored beam, which is usually compensated

by orbit correction. Tougher orbit stability requirements

for the Advanced Photon Source Upgrade (APS-U) project

have led us to revisit the requirements of these magnetic-

field errors. When including the effect of orbit correction

(slow orbit feedback plus fast orbit feedback), we real-

ized that the field-error requirements change from a limit

in absolute values of magnetic-field error integrals to that

of rates of change in magnetic-field error integrals. Some

modeling of the combined effect of ramping the strength

of an ID with orbit correction will be presented. This new

thinking has the potential of greatly alleviating the tuning

requirements of insertion devices of all types.

INTRODUCTION

In the early stages of APS operation, perturbations from

insertion device (ID) field errors was studied intensively,

resulting in a set of ID field specifications [1]. Since then,

many IDs have been built, measured, and placed into oper-

ation at APS. Their properties and the achievable manufac-

turing limits are by now well known.

The first- and second-field integrals of an ID are not zero,

and also, very importantly, vary with gap. To maintain

the source-point during user operations, these perturbations

must be held within some limits relative to an appropri-

ate short-term “average reference” condition, which is not

necessarily the same as the open-gap condition or starting

conditions.

The undulators are slow-moving devices; the induced

perturbation on the stored beam has a time scale of 1 sec-

onds to 2 to 3 minutes. When a device gap is scanned re-

peatedly near their closed position, the period could be a

few seconds to a few minutes, depending on the experi-

menter’s data collection requirements. At the smallest gap

position a significant beam perturbation could take place

within 1 second. Thus the frequency range of interest is,

say, 0.01 to 1 Hz, the lower limit selected to be approxi-

mately the reciprocal of two minutes.

Given that the stored beam can be subjected to pertur-

bations from general sources of all frequencies, a gen-
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eral beam stability requirement for APS-U was recently re-

established (see Table 1). Just like the original APS beam

stability requirement, this requirement is meant as a guide

for setting limits on individual sources of perturbation. One

of the specifications sets limits on all sources in the fre-

quency range 0.01 to 200 Hz (middle column in Table 1).

As discussed previously, conventional undulators are ex-

pected to produce perturbations within a tiny fraction of

that frequency range, while other sources produce pertur-

bations over the whole frequency range. Thus some of the

orbit motion spectrum integrals of Table 1 must be allo-

cated to undulator perturbation limits. In other words, if 3

µm is the maximum allowable rms orbit motion in the x
plane from all sources, then a smaller number, say, 1.0 µm,

would have to be taken as the maximum allowable rms mo-

tion in the 0.01-1 Hz range for undulators.

NEW ALLEVIATING FACTORS

Restricting ID source perturbations to a small amount

like 1 µm may seem impossible at first. However, there

are many alleviating factors not considered until now and

some complicating factors used for years that are no longer

needed:

Previously it was assumed that ID gaps could be mov-

ing together. Actually, independently operated gaps rarely

move together. This will remove a factor
√
NID due to the

number of IDs.

If there are independent IDs whose gaps are scanned

slowly for long periods, the perturbation frequency will be

below the band (below 0.01 Hz), in which case orbit cor-

rection cancels the perturbation with very high (virtually

“infinite”) gain.

Two orbit correction systems are running full-time in dif-

ferent frequency bands and have particularly high gain (i.e.,

correction effectiveness) in the 0.01 - 1 Hz frequency range

of interest. A high gain allows larger tolerances for ID per-

turbation. Figure 1 shows the gain of the orbit correction

as presently configured.

ID gap feedforward on nearby storage ring dipole cor-

rectors can be used to reduce the effort from the feedback

correctors by 90% in DC mode. However, we found that

the EPICS network for communicating gap information is

much slower than the dedicated reflective memory of the

orbit feedback system. Thus a feedforward system for cor-

recting the orbit perturbation would not be needed to im-

prove stability.

The ID perturbation when the gap is moving is not really

a sequence of steps but rather segments of ramp errors of
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Table 1: Main Lattice Parameters and Beam Stability Requirements in rms and in Integrated Power Spectral Density in

the 0.01 - 200 Hz Band

Original

specification

Achieved in APS

Operation1

APS-U

Require-

ments [2]

Allocation

for PM IDs2 Units

Goals or Performance in rms

∆x 16 3.5 3 1.0 µm

∆x′ 1.2 0.57 0.17 µrad

∆y 4.4 1.2 0.42 0.1 µm

∆y′ 0.45 0.22 0.055 µrad

Goals in Integrated Power Spectral Density

∆x 9.0 1.0 µm2

∆x′ 0.32 0.03 µrad2

∆y 0.18 0.01 µm2

∆y′ 0.048 0.003 µrad2

1 0.01 - 100 Hz band.
2 All permanent magnet IDs, including APPLE, planar and revolver undulators.

various rates. An orbit correction will eventually compen-

sate a step error, but will not be able to correct a pertur-

bation that ramps in time. The resulting error, say, e(t) is

equal to the open-loop error orbit rate of change r(t) times

the DC correction time constant τ , i.e., e(t) = r(t)τ . The

time constant for DC orbit correction at APS is 0.25 sec-

onds. (We might be able to reduce the time constant in the

future.) If the ramp doesn’t last too long, say, 10 seconds,

then the AC-coupled fast orbit feedback (otherwise known

as real-time feedback – RTFB) can further reduce the error

because of the higher frequency components in the ramp

perturbation.

Thus we conclude that the values of the field integrals as

a function of gap are not the relevant quantity, rather the

derivative is. This can loosen the requirements quite a lot.

The PSD integral from 0.01 to 200 Hz (and other ranges)

of the BPM readbacks is continuously calculated by the

APS control system with processing that exponentially

averages the result with a 1-minute time constant, thus

smoothing out spikes. The average over the BPMs at the

ID sources will be compared to alarm limits and will be

our criterion for stability during operations.

RAMP ERROR WITH FEEDBACK

The orbit perturbation produced by the first- and second-

field integral errors of an ID is given by:

u(s) =
e

cp

√
βsβo

2 sin(πν)

√

I2
1
+

I2
2

β2
s

× cos (|φ(s)− φs| − πν) , (1)

umax ≈ e

cp

√
βsβo

2 sin(πν)

√

I2
1
+

I2
2

β2
s

, (2)

Figure 1: Correction effectiveness with slow correction

only (“DC only”) and with fast orbit feedback included

(“DC+RT”)

where u is either x or y; βs and βo are the beta functions

at the source and the observation location respectively; I1,2
are the normalized first- and second-field integrals (i.e., an-

gle and position perturbation, respectively); ν is the be-

tatron tune where we will assume values of νx = 0.18
and νy = 0.22; and φ(s) and φs are the phase advances

at longitudinal coordinate s and at the source. The first-

and second-field integrals have values roughly independent

from each other and different limits will be imposed on

each.

Equation (1) obviously indicates that the orbit error in-

duced by a single perturbation is global around the ring,

while Equation (2) gives the maximum expected orbit er-

ror at some other light source point around the ring. These

equations remain valid with integrals and orbit varying

slowly with time, of course.
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Table 2: Requirements for First- and Second-Field Integral Rate of Change.

Field Integral
No orbit

correction1

Orbit correction of

ramp error,

5-second duration

Orbit correction of

ramp error,

indefinite duration

Rate of
∫

Bydz 1.2 G·cm 21 G·cm/s 5.0 G·cm/s

Rate of
∫

Bxdz 1.0 G·cm 16 G·cm/s 4.0 G·cm/s

Rate of
∫

dz
∫

Bydz
′ 2500 G·cm2 43,000 G·cm2/s 10,000 G·cm2/s

Rate of
∫

dz
∫

Bxdz
′ 300 G·cm2 4900 G·cm2/s 1200 G·cm2/s

1 Values in this column are limits on actual field integrals, not their rate.

Most of what follows explains the reduction of the global

orbit due to the global orbit correction system. However,

even for perfect or infinite time response of orbit correction,

there will be remnant local photon beam steering errors be-

cause we don’t have correcting elements in the straight sec-

tion. This spatial-domain limitation, though important, will

be not be discussed here.

A simple frequency-domain model of the global orbit

correction was created using Matlab (building upon scalar-

orbit models written by [3, 4]). Since we are interested in

the low-frequency part of the response, the effect of time

delays and corrector response can be ignored. The results

were shown in Figure 1. The gain is found to vary ap-

proximately as 1/f , which is expected for a system under

integral control, plus some additional help from the AC-

coupled real-time feedback in the important range 0.1 Hz

to 1 Hz. Figure 2 shows the time-domain scalar-model or-

bit response of a unit ramp perturbation (taking orbit and

perturbation as unit-less quantities for simplicity). Without

correction the orbit error would be equal to the perturba-

tion. With integral correction only (slow orbit feedback),

Figure 2: Response to unit-ramp orbit perturbation of our

correction system. The average response within the first 5

seconds determines the ID perturbation specification.

the general error would be given by e(t) = r(t)τ , where

r(t) = 1 s−1 (unit ramp) and τ = 0.25 s in our case. With

the additional AC-coupled correction (fast orbit feedback),

there is a short-term correction within the first 5 to 20 sec-

onds. Taking the average orbit response over the first 5-

second interval, we see that the net orbit response is 0.06

times the ramp rate in both planes. This small factor is re-

flected in the frequency domain plot of Figure 1, where the

average effectiveness in the frequency range 0.1 to 1 Hz is

about 20.

Because of the complex frequency dependence of the

combined DC-AC system correction effectiveness, the ac-

tual orbit “ramp” error from IDs would have to be modeled

on a case-by-case basis with orbit correction simulation for

acceptance (using the present version of orbit correction).

ID INTEGRAL REQUIREMENTS

Finally we arrive at two sets of ID requirements: one

for an arbitrarily long ramp and another (looser) set of

stronger allowed perturbations assuming a 5-second ramp.

The 5-second ramp-error duration was selected because it

matches the worst-case behavior of most planar IDs pertur-

bation.

Table 2 shows the specifications on the first- and second-

field integral rates-of-change for these two ramp conditions

assuming that each of these integrals will contribute to one

half of the ID perturbation allocation of Table 1.

The requirement for the position stability is more severe

than that of the angle coordinate, thus only the requirement

based on position stability is given in the table.

According to this global orbit error analysis, an ID is

allowed to have a somewhat large “peak” in the absolute

value of field integrals as long as the peak is not come

upon too quickly. One way to make a particularly dif-

ficult ID compliant to the rate limit is to make the gap

move slowly in the gap-value range where the field inte-

gral changes quickly.
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