
GPU ACCELERATED ONLINE MULTI-PARTICLE BEAM DYNAMICS

SIMULATOR FOR THE LANSCE LINAC
∗

X. Pang†, L. Rybarcyk, S. A. Baily, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA

Abstract

A GPU-accelerated online multi-particle beam dynam-

ics simulator is being developed for use in the LANSCE

linac operation. The goal is to provide new insights on the

beam distribution inside the linac and to help understand

the impact of set point adjustments on it. Details regarding

the code structure design, GPU programming and perfor-

mance, code validation and status will be presented.

INTRODUCTION

The Los Alamos Neutron Science Center (LANSCE)

linac can provide H+ and H
− beam up to 800 MeV. Due to

a lack of direct beam measurements during high power op-

eration, small adjustments to linac operating set points are

made primarily on the basis of beam loss along the linac.

To provide more insight on the beam distributions along the

linac and to better understand the effects of machine param-

eter changes on the beam, we are creating a virtual beam

diagnostic tool for use in the LANSCE control room [1].

This tool is a Graphics Processing Unit (GPU)-accelerated

multi-particle simulator whose beam dynamics algorithms

are based upon the ion linac design and simulation code

PARMILA [2]. PARMILA is a z-code which uses the R

matrices to transfer particles through accelerator elements.

The simulator is designed using modern software design

techniques and coded in C++ and Python. Using NVIDIAs

CUDA technology [3], the algorithms are recast to fully

harvest the computing power of a GPU. Once connected to

the EPICS control system, the simulator can track the real

time machine parameter changes, convert control set points

to model quantities and quickly update the simulation.

CODE STRUCTURE

Since the simulator is developed for use in the control

room, fast execution and ease of use are both important

design criteria. To meet these criteria, a combination of

a high-level scripting language, i.e. Python, and a low

level compiled language, i.e. C++, were adopted. Fig-

ure 1 shows the hierarchy of code layers that allows the

user to take advantage of the fast number-crunching kernels

written in C++ and CUDA C without having to deal with

the complex syntax and the lengthy compilation process

that is associated with them. The outermost shell of the

code structure that a user directly interfaces with is writ-

ten in Python. Python is chosen as the high-level script-

ing language because of its shallow learning curve, pseudo

∗Work supported by U.S. DOE, NNSA under contract DE-AC52-

06NA25396.
† xpang@lanl.gov

 CUDA C

 (.cu)

C++ (.cpp)

Python/C API (.cpp)

Python (.py)

Figure 1: Code hierarchy. Lower level codes are wrapped

by the higher level ones.

code like syntax, lack of compilation phase, easy integra-

tion with the compiled languages and the rich numerical

and visualization libraries. Figure 2 shows the major com-

ponents of the core part of the code that is written in C++

and CUDA C. Following the CUDA convention [3], we re-

fer to the CPU as the host and the GPU as the device in the

rest of this paper. The components colored in blue (left) are

the ones that reside on the host while those colored in yel-

low (right) reside on the device. The BeamLine component

(middle) resides in pinned, or page-locked memory on the

host and the information stored is shared between the host

and device and denoted by the green block. Each major

component is described in detail as follows:

EPICS

DataServer

 SQL

database

 BeamLine

 (pinned

 memory)

 text output/

 control

 feedback

SimulationEngine

Beam

Graphical output

 (OpenGL)

CPU (host) GPU (device)

Figure 2: High level code structure and data flow indicated

by the arrows.

The DataServer reads values from EPICS in multi-

threaded fashion and stores the updated values to the SQL

database.

The SQL database stores all the measured engineering

values coming in from the DataServer, the conversion al-

gorithms for every controllable accelerator element, and

most importantly the converted physics quantities that are

Proceedings of PAC2013, Pasadena, CA USA MOPMA18

05 Beam Dynamics and Electromagnetic Fields

D06 - Code Development and Simulation Techniques

ISBN 978-3-95450-138-0

339 C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

eventually used in the beam dynamics simulations. A cen-

tral database repository was chosen over flat files to guar-

antee data consistency and to provide historical tracking of

data changes. Due to its light weight, self-contained and

server-less features, SQLite was picked as the relational

database management system (RDBMS) for the simulator.

The BeamLine component of the code is a data struc-

ture that stores the physics quantities of all the accelerator

elements required in the simulation. It is updated in real-

time once changes to the SQL database are detected so that

the physics model used in the simulation is synchronized

with the real world machine parameter settings. This data is

stored in the pinned memory. In this way, modifications by

either the host or the device can be reflected in the memory

spaces of both sides, eliminating the need to first search for

the element index for which the changes were made, then

explicitly copying the new value from host to device.

The Beam class is used to store coordinate information

for all the particles and some collective properties of the

beam. Particle data are allocated on the global memory

of the GPU in the format of structure-of-arrays (SoAs) to

facilitate coalesced global memory access in the particle

tracking simulation and beam property calculations. In or-

der to reduce the expensive memory traffic between the

host and the device, the Beam object is allocated on the

GPU before the simulation starts and is kept on the GPU

until the simulation ends. This class also provides methods

to calculate different properties of the beam like centroid,

size, emittance and beam loss etc. on the GPU.

The SimulationEngine component is the core of this sim-

ulator. All the physics algorithms for particle advancing

and space charge effects are implemented in the Simula-

tionEngine. These algorithms are stored in several CUDA

kernel functions and are glued together by two overarch-

ing C++ classes, SimulationEngine and SpaceCharge. The

SimulationEngine class orchestrates the whole simulation

while the SpaceCharge class only manages the parameters

and functions used in space charge calculations.

The Output of the code can be a graphical display, a text

file or specific values sent back to the EPICS control sys-

tem. A graphical display system is being developed using

openGL so that simulation results sitting on the GPU can

be conveniently displayed without copying back to the host

when a graphical output enabled GPU is used.

GPU PERFORMANCE

The performance of the GPU accelerated simulator is

compared with that of the optimized single CPU version

of the code. The test system used for the comparison is a

custom built workstation with Intel Xeon E5520 2.27GHz,

32 Gb of RAM, and a NVIDIA GTX 580 (Fermi architec-

ture), running an x86 64 install of Scientific Linux 6.3 and

CUDA 5.0.

The physics algorithm of the code consists of two ma-

jor parts: particle advancing and space charge calculations.

For particle advancing, the instruction level parallelism

(ILP) was explored by assigning one thread to process four

particles. This allows more computing resources to be used

by a thread, more data to be reused and independent calcu-

lations within a thread to be processed in parallel, therefore

more latency to be hidden. An overall faster execution can

be achieved. In the space charge force calculation, particles

are first binned onto a mesh and stored in a charge density

table. Then an electric field table is calculated based on the

charge density. Space charge kicks on the particles are ap-

plied by interpolating the electric field table based on indi-

vidual particle’s position on the mesh. Among these steps,

the charge density table calculation accounts for the most

computing time and is the bottleneck of the overall perfor-

mance. To avoid the race condition when the density table

is updated by multiple threads, the floating point atomic ad-

dition in the CUDA is used. This gives us about 12 times

speedup in the charge density calculation compared to the

CPU version.

Two LANSCE beam lines were used for the overall per-

formance test: part of the H
+ low energy beam trans-

port (LEBT) which consists of 8 quadrupoles, 4.32 me-

ter long drift spaces (divided into 442 segments to apply

space charge kicks), a RF cavity and a dipole and the drift

tube linac (DTL), which includes 135 quadrupoles, 165 RF

gaps and 1.68 meter long inter-tank drift spaces (divided

into 171 segments). Typically using 32K particles in the

simulation is sufficient to get an accurate estimate of many

of the beam properties.

Without calculating the space charge effect, transport-

ing 32K particles through an accelerator element using

GPU can be 160 times faster than on a single CPU. Ta-

ble 1 summarizes the total computing time including the

space charge calculations and the speedup of simulations

using different particle numbers. The overall performance

is dominated by the space charge calculation which con-

sumes between 70% to 90% of the computing time. One

simulation through the transport structure on the GPU us-

ing 32K particles takes less than a second, whereas on a

single CPU, it takes more than half a minute. In an acceler-

ator control room where rapid response from any system is

required, a reduction from half a minute to a fraction of a

second makes this simulator a viable tool for pseudo-real-

time computational turn-around in this demanding environ-

ment.

RESULTS

Before relying on the simulator to provide useful insight

about the beam evolution in the linac under routine oper-

ating conditions, it must first be calibrated. Details about

the calibration process is described in [4]. Figure 3 shows

that after the calibration, we were able to get an excellent

agreement between the results from the actual phase scan

measurements made with the LANSCE H
+ beam and the

results from the simulated phase scan following the ad-

justment of the relevant calibration factors. Figure 4 is a

screen shot of the EPICS control channels and the sim-

ulator outputs for the simulation of H
− beams at LAN-

SCE accelerated from 0.75 to 100 MeV through the DTL.

MOPMA18 Proceedings of PAC2013, Pasadena, CA USA

ISBN 978-3-95450-138-0

340C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D06 - Code Development and Simulation Techniques

Table 1: Computing Time and Speedup

Initial Particle Beamline Overall Overall
Number Structure Time [s] Speedup

Transport 0.66 45.8
16384

DTL 0.37 26.7

Transport 0.78 44.5
32768

DTL 0.47 34

Transport 1.02 42.3
65536

DTL 0.71 39

Transport 1.48 40.1
131072

DTL 1.15 45.2

Transport 2.4 39.8
262144

DTL 2.07 48.6

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

C
u
rr

e
n
t
[m

A
]

Measurement PB on
Simulation PB on

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 100 150 200 250 300 350 400

C
u
rr

e
n
t
[m

A
]

Phase set point

Measurement PB off
Simulation PB off

Figure 3: Phase scan measurements (blue x’s) of the LAN-

SCE DTL tank 1 with main buncher on and prebuncher on

(top) and off (bottom). The simulated phase scan results

following calibration factor adjustment are shown in red.

Figure 4: Screenshot of the EPICS control interfaces (left)

and the simulator outputs (right).

Numerous beam properties such as phase space distribu-

tions and phase space projections at the end of the DTL

as well as beam centroid, size, emittance, and fractional

beam loss along the DTL are displayed. From this inter-

face, changes that are made to relevant DTL operating pa-

rameters can be captured by the simulator and reflected in

the simulation results in pseudo realtime. These 2D graph-

ics displays were made using OpenGL, which maintains

high throughput as additional communications through the

CPU are minimized. This type of interface gives control

room personnel additional information regarding beam per-

formance and allows them to better understand the impact

of any machine parameter changes to the overall accelera-

tor performance.

STATUS AND FUTURE WORK

Currently, the simulator contains several standard trans-

port elements and the DTL structure. The addition of the

coupled-cavity linac (CCL) structure to the code is under-

way as well as improvements to the Python interface and

data I/O. Following that, our near term plans include gener-

ation and calibration of the LANSCE CCL in the model and

front-to-end simulations of the LANSCE linac from 0.75

to 800 MeV. More long range plans under consideration

include simultaneously modeling multiple beam species,

addition of other beam loss mechanism, e.g. H- stripping

[5] and addition of a new space charge calculation routine

based on a 3D Poisson solver.

CONCLUSION

By combining multi-particle tracking simulation algo-

rithms with state-of-the-art GPU technology we have de-

veloped a powerful tool for use in the demanding acceler-

ator control room environment. It has many applications

not mentioned here [4][6][7]. Although more efforts are

needed to further calibrate the existing model and to in-

corporate more accelerator structures, we believe this ap-

proach can greatly enhance operations and performance of

existing and future accelerators.

REFERENCES

[1] X. Pang, L. Rybarcyk, S. A. Baily, IPAC, 2012.

[2] H. Takeda, J. H. Billen, Parmila, LA-UR-98-4478, 2005.

[3] NVIDIA Corporation, CUDA C Programming Guide, ver-

sion 5.0, 2012.

[4] L. Rybarcyk, X. Pang, PAC 2013, 2013.

[5] L. Rybarcyk, C. Kelsey IV, R. McCrady, X. Pang, IPAC 12,

2012.

[6] A. Scheinker, X. Pang, and L. Rybarcyk, submitted for pub-

lication to Phys. Rev. ST-Accel. Beams.

[7] X. Pang, L. Rybarcyk, ”Multi-objective Optimization for

LANSCE Linac Operations”, ICALEPCS 2013.

Proceedings of PAC2013, Pasadena, CA USA MOPMA18

05 Beam Dynamics and Electromagnetic Fields

D06 - Code Development and Simulation Techniques

ISBN 978-3-95450-138-0

341 C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

