
LANSCE-RM WIRE SCANNERS: SLIP-ENCODED SERIAL
COMMUNICATION FOR MAINTENANCE DISPLAY AT THE

INSTRUMENT*

J. Sedillo, J.D. Gilpatrick, LANL, Los Alamos 87545, USA
Abstract

The newest LANSCE-RM wire scanner control
systems at Los Alamos National Laboratory’s LANSCE
particle accelerator facility utilize touch-panel displays
for limited status and control at the instrument. Since the
wire scanner control hardware utilizes a National
Instruments CompactRIO embedded controller, no
display may be interfaced to the CompactRIO via
conventional means. Thus, in order to display information
from the CompactRIO, a touch-panel display and
computer combo unit has been added to each wire scanner
control chassis with information being exchanged via a
common, RS-232 interface. This paper describes the
maintenance features available at the touch screen and the
underlying SLIP communication scheme used for simple
packetized transfer of data between the touch-panel
display and the CompactRIO.

INTRODUCTION
The control system outlined in figure 1 represents the

solution developed by LANSCE staff for wire scanner
actuator control and data acquisition [1]. Among its
assortment of features is the control system’s chassis-
mounted, touch-panel PC (TPC) for localized control and
diagnostics of the wire scanner system.

Figure 1: LANSCE-RM Wire Scanner Controller.

Although the touch panel PC offers a variety of high-
bitrate interfaces (e.g. Ethernet and USB), the touch
panel’s RS-232, null-modem interface was chosen due to
its ease of use and its common and direct interface to the
compactRIO (cRIO) controller’s FPGA (via the FPGA’s
NI 9870 RS-232 c-series module).

MOTIVATION
RS-232 null-modem links offer a great deal of

flexibility with how data is communicated since the
hardware does not inherently provide the means to
organize data meaningfully other than its FIFO approach.
If context of the data may be derived from each individual
byte communicated, then no expanded form of data
encapsulation may be necessary. However, for more
common situations where the data varies in content (e.g.
varying data structures) and size (the size of the data
structure in bytes), the implementation of a data
encapsulation scheme will assist the receiver with making
a clear determination of data boundaries by placing the
data in “packets”.

Data encapsulation schemes are fundamental to many
familiar hardware communication systems, the most
prevalent of which is 802.3 ethernet. Common
encapsulation schemes leveraged on 802.3 networks
include the familiar IP, TCP, UDP, etc. Given the
successful standardization and implementation of these
protocols, almost any one of them may be utilized for
serial links implemented on hardware other than 802.3,
depending on the application. Since the wire scanner’s
cRIO transmits a variety of data structures to the TPC and
since the data can arrive in an unpredictable order, a data
encapsulation method was required to assist both the TPC
and cRIO to 1: understand the where a packetized data
structure begins and ends, and 2: to determine how to
direct the data to the proper methods for processing.

SLIP
IETF de-facto standard RFC1055, otherwise known as

SLIP, was deemed the most suitable protocol for data
encapsulation [3]. SLIP is an acronym for Serial-Line
Internet Protocol and is a data-link layer protocol in the
OSI conceptual model. SLIP was developed as a simple
means of transmitting TCP/IP datagrams over serial lines
when no standard yet existed and has since been replaced
by PPP (Point-to-Point Protocol, RFC1661) in most
applications. SLIP focuses only on packet framing, and
therefore does not inherently provide a means for
addressing, packet type identification, error
detection/correction, or compression [2].

SLIP’s simplicity made it an attractive choice for this
application since encoding and decoding methods of more
complex protocols would have been needlessly difficult to
develop for the cRIO FPGA. Furthermore, the limitations
of the SLIP protocol were of little concern since the wire
scanner controller can operate without proper operation
the TPC; and because the414-6541 link was short (<1 ft),

*Work supported by the U.S. Department of Energy.

THPAC25 Proceedings of PAC2013, Pasadena, CA USA

ISBN 978-3-95450-138-0

1196C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

07 Accelerator Technology

T03 - Beam Diagnostics and Instrumentation

low-speed (56kbps), and directly linked. These qualities
ensure low probability of data corruption.

SLIP Encoding
The SLIP encoding method is generally simple to

implement. Given a data structure that has been flattened
into a 1-D array of bytes, the SLIP encoding method
simply appends hexadecimal byte 0xC0 to the beginning
and end of the array. These bytes encapsulate the data and
form the boundaries of the SLIP packet (figure 2).

Figure 2: Slip packet layout [3].

If the 1-D array of data contains the value 0xC0, that
value is replaced by 0xDBDC (two bytes). If 0xDB is
encountered, it is replaced by 0xDBDD (two bytes).
Through this method, special SLIP encapsulation
characters and data cannot be mistaken by the SLIP
decoder.

SLIP Decoding
SLIP decoding is slightly more complicated than

encoding. In the ideal case, 0xC0 is the first byte a SLIP
decoder encounters upon first receipt of SLIP-encoded
serial data. The decoder must simply accumulate the bytes
after the 0xC0 header until encountering 0xC0 again. In
the not uncommon circumstance where the SLIP encoder
utilized special byte patterns 0xDBDC and 0xDBDD, the
SLIP decoder will replace 0xDBDC by 0xC0, and
0xDBDD by 0xDB. The data enclosed with the 0xC0
characters may then be passed to other routines for its
appropriate use. In the event that a receiving system
comes online after data transmission has progressed, the
receiving system will simply disregard all data received
until it encounters the next SLIP packet’s 0xC0 header.

UTILIZATION
After implementing the SLIP encoding and decoding

methods for the cRIO and TPC, a custom data
encapsulation scheme was developed for incorporation
within the SLIP packets. This was necessary to overcome
SLIP’s lack of a provision for identifying packet types.

Tag Length
(1 byte)

Payload Length
(2 bytes)

Tag
(1-255 bytes)

Payload
(1-65,535 bytes)

Figure 3: Custom packet structure.

The custom packet (Figure 3) specifies a 3-byte header
and a variable-length payload. The first header byte
represents a tag length in bytes. The remaining two
header bytes represent the data payload length in bytes.
The header is then followed by the tag and the data

payload. The tag allows the receiving system to identify
the data packet and direct its contents to the correct
methods for proper use.

Three communication channels operate within the
single, RS-232 link between the cRIO and TPC. The
operational flow is shown in figure 4 and described in the
sections that follow.

CompactRIO FPGA to TPC Channel
The wire scanner's CompactRIO FPGA sends wire

scanner status information to the TPC. This status
information includes: actuator position, limit status, sense
wire continuity, remote operation status, the general error
condition, network ID, beam gate, FPGA state, and the
cRIO C-series module status.

The cRIO FPGA accumulates the data from its internal
processes, encapsulates the data within “custom” packets
with unique tags representative of the data, and then
directs the custom packets through a SLIP encoding
process. The SLIP packets that result are then directed to
the RS-232 FIFO for transmission to the TPC. The FPGA
has the least flexibility with regard to packet size since
arrays dedicated to the transmission and reception of the
packets must be of a fixed size prior to FPGA
compilation. The corollary to this is that all packets
transmitted to the FPGA from external systems must also
fit within the FPGA’s array size constraints.

TPC to CompactRIO FPGA Channel
The TPC sends commands to the cRIO FPGA for

minimal control of the wire scanner actuator. Command
information includes the actuator position setpoint and
actuator operational envelope scan. These data allow for
some localized control of the wire scanner actuator
mechanism.

Data transmitted from the TPC to the cRIO FPGA
occurs in a similar way to the “CompactRIO FPGA to
TPC Channel” process. Although the TPC can
dynamically allocate memory for substantially large SLIP
packets, the size of the packets it transmits are of a size
that are compatible with the maximum allocated array
size of the cRIO FPGA’s receive array.

CompactRIO RT to Touch Panel PC Channel
The cRIO RT system sends wire scanner configuration

data to the TPC through the cRIO FPGA’s RS-232 link.
Configuration data includes:
 Actuator configuration: leadscrew pitch, stepper

motor resolution, sense wire center positions, and
mount angle.

 Motion control configuration: closed-loop control
constants, position deadband, and stepper motor
settings.

 Beam data acquisition configuration: AFE (Analog
Front End) transimpedance values, ADC sampling
rate, pre and post trigger samples, and macropulse
waveform cumulative average count.

Proceedings of PAC2013, Pasadena, CA USA THPAC25

07 Accelerator Technology

T03 - Beam Diagnostics and Instrumentation

ISBN 978-3-95450-138-0

1197 C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 4: Overview of cRIO/TPC Communication flow.

The relatively large amount of data transmitted by the
cRIO RT system to the TPC made it essential that data
packets produced by the cRIO RT avoid the cRIO
FPGA’s bottlenecks. To do this, the cRIO RT encodes its
data before transmitting the resulting data stream to a
DMA FIFO read by the FPGA. Once the FPGA has
completed sending its own packet stream to the TPC, it
checks the DMA FIFO for data content. If data exists, the
FPGA simply directs the data directly into the RS-232
FIFO for transmission to the TPC.

IMPROVEMENTS
SLIP is simply one of many methods for data

encapsulation over serial streams. Again, SLIP does not
inherently provide a means for addressing, packet type
identification, error detection/correction, or compression.
This work has compensated for SLIP’s lack of packet
type identification and required minimal error correction
since a high-fidelity data link was utilized. More
demanding applications may require more features from a
SLIP implementation. In such cases, other protocols that
possess the necessary features may be encapsulated
within the SLIP packet or used outright, depending on the
protocol and its compatibility with the application.

LANSCE-RM WIRE SCANNER PROJECT
UPDATE

Six new LANSCE-RM wire scanner systems have been
deployed throughout the LANSCE facility: two in the 201
DTL, Three in the 805 linac, and one in the switchyard.
Integration of these systems is complete with all systems
fully utilizable by LANSCE’s central control room.
Figure 5 shows a beam profile obtained by one of the wire
scanners deployed in the 805 linac. Additional systems
are planned for installation as resources become available.

Figure 5: LANSCE Control Room view of wire
scanner-acquired beam profiles.

REFERENCES
[1] J. Sedillo, et al. “First Test Results of the New LANSCE

Wire Scanner.” PAC ’11, New York, March 2011
MOP236; http://www.JACoW.org

[2] J. Romkey, “A Nonstandard for Transmission of IP
Datagrams Over Serial Lines: SLIP,” RFC1055,
http://www.ietf.org/rfc/rfc1055.txt

[3] http://recolog.blogspot.com/2012/10/serial-line-internet-
protocol-slip.html

THPAC25 Proceedings of PAC2013, Pasadena, CA USA

ISBN 978-3-95450-138-0

1198C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

07 Accelerator Technology

T03 - Beam Diagnostics and Instrumentation

