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Abstract 

The newest LANSCE-RM wire scanner control 
systems at Los Alamos National Laboratory’s LANSCE 
particle accelerator facility utilize touch-panel displays 
for limited status and control at the instrument. Since the 
wire scanner control hardware utilizes a National 
Instruments CompactRIO embedded controller, no 
display may be interfaced to the CompactRIO via 
conventional means. Thus, in order to display information 
from the CompactRIO, a touch-panel display and 
computer combo unit has been added to each wire scanner 
control chassis with information being exchanged via a 
common, RS-232 interface. This paper describes the 
maintenance features available at the touch screen and the 
underlying SLIP communication scheme used for simple 
packetized transfer of data between the touch-panel 
display and the CompactRIO. 

INTRODUCTION 
The control system outlined in figure 1 represents the 

solution developed by LANSCE staff for wire scanner 
actuator control and data acquisition [1]. Among its 
assortment of features is the control system’s chassis-
mounted, touch-panel PC (TPC) for localized control and 
diagnostics of the wire scanner system. 

 

 

Figure 1: LANSCE-RM Wire Scanner Controller. 
 

Although the touch panel PC offers a variety of high-
bitrate interfaces (e.g. Ethernet and USB), the touch 
panel’s RS-232, null-modem interface was chosen due to 
its ease of use and its common and direct interface to the 
compactRIO (cRIO) controller’s FPGA (via the FPGA’s 
NI 9870 RS-232 c-series module).  

MOTIVATION 
RS-232 null-modem links offer a great deal of 

flexibility with how data is communicated since the 
hardware does not inherently provide the means to 
organize data meaningfully other than its FIFO approach. 
If context of the data may be derived from each individual 
byte communicated, then no expanded form of data 
encapsulation may be necessary. However, for more 
common situations where the data varies in content (e.g. 
varying data structures) and size (the size of the data 
structure in bytes), the implementation of a data 
encapsulation scheme will assist the receiver with making 
a clear determination of data boundaries by placing the 
data in “packets”.  

Data encapsulation schemes are fundamental to many 
familiar hardware communication systems, the most 
prevalent of which is 802.3 ethernet. Common 
encapsulation schemes leveraged on 802.3 networks 
include the familiar IP, TCP, UDP, etc. Given the 
successful standardization and implementation of these 
protocols, almost any one of them may be utilized for 
serial links implemented on hardware other than 802.3, 
depending on the application. Since the wire scanner’s 
cRIO transmits a variety of data structures to the TPC and 
since the data can arrive in an unpredictable order, a data 
encapsulation method was required to assist both the TPC 
and cRIO to 1: understand the where a packetized data 
structure begins and ends, and 2: to determine how to 
direct the data to the proper methods for processing. 

SLIP 
IETF de-facto standard RFC1055, otherwise known as 

SLIP, was deemed the most suitable protocol for data 
encapsulation [3]. SLIP is an acronym for Serial-Line 
Internet Protocol and is a data-link layer protocol in the 
OSI conceptual model. SLIP was developed as a simple 
means of transmitting TCP/IP datagrams over serial lines 
when no standard yet existed and has since been replaced 
by PPP (Point-to-Point Protocol, RFC1661) in most 
applications. SLIP focuses only on packet framing, and 
therefore does not inherently provide a means for 
addressing, packet type identification, error 
detection/correction, or compression [2]. 

SLIP’s simplicity made it an attractive choice for this 
application since encoding and decoding methods of more 
complex protocols would have been needlessly difficult to 
develop for the cRIO FPGA. Furthermore, the limitations 
of the SLIP protocol were of little concern since the wire 
scanner controller can operate without proper operation 
the TPC; and because the414-6541 link was short (<1 ft), 
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low-speed (56kbps), and directly linked. These qualities 
ensure low probability of data corruption. 

SLIP Encoding 
The SLIP encoding method is generally simple to 

implement. Given a data structure that has been flattened 
into a 1-D array of bytes, the SLIP encoding method 
simply appends hexadecimal byte 0xC0 to the beginning 
and end of the array. These bytes encapsulate the data and 
form the boundaries of the SLIP packet (figure 2).  

Figure 2: Slip packet layout [3]. 

If the 1-D array of data contains the value 0xC0, that 
value is replaced by 0xDBDC (two bytes). If 0xDB is 
encountered, it is replaced by 0xDBDD (two bytes). 
Through this method, special SLIP encapsulation 
characters and data cannot be mistaken by the SLIP 
decoder. 

SLIP Decoding 
SLIP decoding is slightly more complicated than 

encoding. In the ideal case, 0xC0 is the first byte a SLIP 
decoder encounters upon first receipt of SLIP-encoded 
serial data. The decoder must simply accumulate the bytes 
after the 0xC0 header until encountering 0xC0 again. In 
the not uncommon circumstance where the SLIP encoder 
utilized special byte patterns 0xDBDC and 0xDBDD, the 
SLIP decoder will replace 0xDBDC by 0xC0, and 
0xDBDD by 0xDB. The data enclosed with the 0xC0 
characters may then be passed to other routines for its 
appropriate use. In the event that a receiving system 
comes online after data transmission has progressed, the 
receiving system will simply disregard all data received 
until it encounters the next SLIP packet’s 0xC0 header. 

UTILIZATION 
After implementing the SLIP encoding and decoding 

methods for the cRIO and TPC, a custom data 
encapsulation scheme was developed for incorporation 
within the SLIP packets. This was necessary to overcome 
SLIP’s lack of a provision for identifying packet types. 
 

Tag Length 
(1 byte)

Payload Length 
(2 bytes)

Tag 
(1-255 bytes)

Payload
(1-65,535 bytes)  

 

Figure 3: Custom packet structure. 
 

The custom packet (Figure 3) specifies a 3-byte header 
and a variable-length payload. The first header byte 
represents a tag length in bytes. The remaining two 
header bytes represent the data payload length in bytes. 
The header is then followed by the tag and the data 

payload. The tag allows the receiving system to identify 
the data packet and direct its contents to the correct 
methods for proper use. 

Three communication channels operate within the 
single, RS-232 link between the cRIO and TPC. The 
operational flow is shown in figure 4 and described in the 
sections that follow. 

CompactRIO FPGA to TPC Channel 
The wire scanner's CompactRIO FPGA sends wire 

scanner status information to the TPC. This status 
information includes: actuator position, limit status, sense 
wire continuity, remote operation status, the general error 
condition, network ID, beam gate, FPGA state, and the 
cRIO C-series module status. 

The cRIO FPGA accumulates the data from its internal 
processes, encapsulates the data within “custom” packets 
with unique tags representative of the data, and then 
directs the custom packets through a SLIP encoding 
process. The SLIP packets that result are then directed to 
the RS-232 FIFO for transmission to the TPC. The FPGA 
has the least flexibility with regard to packet size since 
arrays dedicated to the transmission and reception of the 
packets must be of a fixed size prior to FPGA 
compilation. The corollary to this is that all packets 
transmitted to the FPGA from external systems must also 
fit within the FPGA’s array size constraints. 

TPC to CompactRIO FPGA Channel 
The TPC sends commands to the cRIO FPGA for 

minimal control of the wire scanner actuator. Command 
information includes the actuator position setpoint and 
actuator operational envelope scan. These data allow for 
some localized control of the wire scanner actuator 
mechanism. 

Data transmitted from the TPC to the cRIO FPGA 
occurs in a similar way to the “CompactRIO FPGA to 
TPC Channel” process. Although the TPC can 
dynamically allocate memory for substantially large SLIP 
packets, the size of the packets it transmits are of a size 
that are compatible with the maximum allocated array 
size of the cRIO FPGA’s receive array. 

CompactRIO RT to Touch Panel PC Channel 
The cRIO RT system sends wire scanner configuration 

data to the TPC through the cRIO FPGA’s RS-232 link. 
Configuration data includes: 
 Actuator configuration: leadscrew pitch, stepper 

motor resolution, sense wire center positions, and 
mount angle. 

 Motion control configuration: closed-loop control 
constants, position deadband, and stepper motor 
settings. 

 Beam data acquisition configuration: AFE (Analog 
Front End) transimpedance values, ADC sampling 
rate, pre and post trigger samples, and macropulse 
waveform cumulative average count. 
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Figure 4: Overview of cRIO/TPC Communication flow. 

 

The relatively large amount of data transmitted by the 
cRIO RT system to the TPC made it essential that data 
packets produced by the cRIO RT avoid the cRIO 
FPGA’s bottlenecks. To do this, the cRIO RT encodes its 
data before transmitting the resulting data stream to a 
DMA FIFO read by the FPGA. Once the FPGA has 
completed sending its own packet stream to the TPC, it 
checks the DMA FIFO for data content. If data exists, the 
FPGA simply directs the data directly into the RS-232 
FIFO for transmission to the TPC. 

IMPROVEMENTS 
SLIP is simply one of many methods for data 

encapsulation over serial streams. Again, SLIP does not 
inherently provide a means for addressing, packet type 
identification, error detection/correction, or compression. 
This work has compensated for SLIP’s lack of packet 
type identification and required minimal error correction 
since a high-fidelity data link was utilized. More 
demanding applications may require more features from a 
SLIP implementation. In such cases, other protocols that 
possess the necessary features may be encapsulated 
within the SLIP packet or used outright, depending on the 
protocol and its compatibility with the application. 

LANSCE-RM WIRE SCANNER PROJECT 
UPDATE 

Six new LANSCE-RM wire scanner systems have been 
deployed throughout the LANSCE facility: two in the 201 
DTL, Three in the 805 linac, and one in the switchyard. 
Integration of these systems is complete with all systems 
fully utilizable by LANSCE’s central control room. 
Figure 5 shows a beam profile obtained by one of the wire 
scanners deployed in the 805 linac. Additional systems 
are planned for installation as resources become available. 

Figure 5: LANSCE Control Room view of wire 
scanner-acquired beam profiles. 
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