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Abstract

In muon accelerators, ionization cooling is the only vi-

able option for reducing the muon beam emittance to values

necessary for a muon collider. An ionization cooling lattice

requires a large momentum acceptance, small beta func-

tions, an extremely large dynamic aperture, and a modest

amount of dispersion to have good performance. The latter

values are a function of beam momentum. One step in un-

derstanding the lattice performance is to determine these

quantities for a lattice cell being studied. This is mod-

estly more complex than usual since the lattice is gener-

ally highly coupled. We first review the general method for

computing these quantities for a general lattice. Then we

look at several lattices of interest, compute these quantities,

and relate their values and momentum dependencies to the

performance of the lattices.

ANALYSIS

To try to understand the behavior of cooling lattices, one

can used standard techniques for analyzing accelerator lat-

tices. These systems are highly coupled, and they are non-

symplectic due to the presence of cooling. The symplec-

ticity is further complicated by the use of kinetic momenta

in most tracking codes. Use of canonical momenta would

be challenging due to the strong transverse vector poten-

tials that arise from the use of solenoids, but would arise in

any case due to the use of short cells and large beam sizes.

Symplecticity can be further compromised by use of a non-

symplectic integrator with step sizes larger than needed for

machine precision and magnetic field approximations that

are not divergence-free.

Fixed Energy

At fixed energies, we find the closed orbit through a sin-

gle cooling cell, then look at the linear map about that

closed orbit. We then find the eigenvalues and eigenvectors

of the linear map to get the tunes and the beta functions.

More specifically, if M is the linear map about the closed

orbit, then we find a matrix A such that MA = AR, where

R is in the form








λ1 cosµ1 λ1 sinµ1 0 0
−λ1 sinµ1 λ1 cosµ1 0 0

0 0 λ1 cosµ2 λ1 sinµ2

0 0 −λ1 sinµ2 λ1 cosµ2









(1)
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Since M is not necessarily symplectic, we allow λk 6= 1.

We find the lattice parameters as a function of energy.

We will not study energies for which the lattice does not

have stable orbits in the sense that R is of the form (1).

The matrix A is not uniquely defined. There are three

different degrees of freedom. First, one can exchange the

first two columns of A with the last two columns, which

corresponds to swapping the eigenvalues. Second, one can

change the sign of one of the first two columns of A, which

corresponds to changing the sign of µ1 (similarly for the

last two columns and the sign of µ2). Finally, one can mul-

tiply A on the right by a matrix of the form (1) (but with

different parameters than R). We will define A sufficiently

to accomplish three goals: to resolve the sign ambiguity in

µk in R; to be able to compute the beta functions; and to

ensure that the two sets of eigenvalues and the beta func-

tions are continuous functions of the energy (so that the 1

and 2 indices don’t swap arbitrarily).

For a given energy, we scale both a2k−1 and a2k (aj ,

1 6 j 6 4, is the jth column of A) by the same value, and

possibly change the sign of a2k, so that aT
2k−1Ja2k = 1,

where

J =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









(2)

and the order of coordinates is (x, px, y, py). If we change

the sign of a2k, we also change the sign of µk. There is still

an arbitrary rotation on the right side of A; we will insure

that subsequent results are independent of that rotation.

Say we compute A1 and A2 for nearby energies. We

would expect these matrices to be nearly the same, ex-

cept for an arbitrary rotation on the right side of each

one. If the columns of these matrices are a1;j and

a2;j , we compute the matrix Skl with elements skl;ij =
a
T
2;2k−2+iJa1;2l−2+j . If detS11 > detS12, then the

columns of A1 and A2 refer to corresponding eigenvec-

tors. If not, then the eigenvectors are in a different order

in A1 and A2, and for one of the matrices the first pair of

columns should be swapped with the second pair, and the

eigenvalues should be swapped as well.

Each eigenvector pair describes a corresponding set of

Courant-Snyder lattice functions. They relate the beam size

and angular divergence to the area traced out by an ellipse.

Since with coupling, oscillation is not in a fixed plane, the

corresponding quantities must be independent of direction.

They must also be independent of the arbitrary rotation on

the right side of A. By analogy to the usual quantities, we

can then define

βk = a21,2k + a21,2k+1 + a23,2k + a23,2k+1 (3)
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Figure 1: Beta functions vs. total momentum in stage 4

of the rectilinear FOFO (curves). The plus symbols are

the beta functions and total momentum for the 6-D closed

orbit.
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Figure 2: Like Fig. 1, but for the planar snake.

One could similarly define αk and γk, though the usual

relationships between these quantities do not necessarily

hold since there are additional degrees of freedom due to

coupling between the planes.

We calculate dynamic apertures as a function of energy

by launching particles along the vector

√

2J1a1 +
√

2J2a3 (4)

and keeping track of the number of turns a particle survives

as a function of J1 and J2.

6-D Fixed Point

We can also find the 6-D fixed point in the presence

of acceleration and the average energy loss in the ab-

sorbers. All calculations are as for fixed energy but with 6-

dimensional phase space vectors. Our additional variables

are time and energy. The additional rows and columns of

J may need a sign change or scaling factor depending on

the exact implementation (blindly using energy and time,

plus having momenta in eV/c, leads to a factor of −c in J
as used above). The eigenvalues will no longer have unit

magnitude even for Maxwellian fields due to the presence

of the absorber. Beta functions for the modes which are

primarily transverse are computed according to (3).
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Figure 3: Momentum range vs. the geometric average of

the beta functions at the 6-D fixed point.

One can calculate a “lossless” Q factor which arises

solely from the average energy loss in the absorber and de-

cays:

dǫ6/ǫ6
dN/N

=
−2 ln|λ1λ2λ3|(pc)τµc

L(mµc2)
(5)

where ǫ6 is the product of the emittances, N is the number

of particles, λk are the eigenvalues of the one-cell map, p
is the average total momentum for the closed orbit parti-

cle, τµ is the muon rest lifetime, mµ is the muon rest mass,

L is the cell length, and c is the speed of light. The Q
value for the real lattice [1] is lower due to multiple scat-

tering and energy straggling, which increase the emittances

and cause particles to fall out of the dynamic aperture, dy-

namical losses of large amplitude particles, and emittance

growth from mismatches and nonlinearities.

LATTICES

We study three cooling lattices. The first is a “Guggen-

heim” channel [2], where the beamline bends around in a

circle while gradually moving perpendicular to the plane

of the circle. A dipole field which is mostly in the vertical

direction is generated by tilting the solenoid coils. In ad-

dition to generating bending, this creates dispersion (in po-

sition) at a wedge-shaped absorber. The solenoid field un-

dergoes a single sinusoidal-like oscillation within the cell.

The second is a rectilinear FOFO snake [3, 4], which has

fields similar to the Guggenheim channel, but with smaller

coil tilts and therefore a smaller dipole field, but where the

beamline is straight. This requires vertical motion of the

closed orbit to correct the bending from the dipole field.

The third is a planar snake [5], which is a straight channel

like the rectilinear FOFO. However, the solenoid field in

one cell is opposite to the field in the next cell. In the pres-

ence of the dipole field generated from the tilts, this makes

the period of this lattice two “cells” long. In addition, the

direction of the tilts is chosen so that instead of dispersion

in position at the absorber, there is dispersion in momen-

tum. Thus a parallel-faced absorber can be used instead of

a wedge.
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Figure 4: Lossless Q, vs. stage number. The planar snake

has a beta function similar to stage 4 of either the Guggen-

heim or rectilinear FOFO.

Calculations are performed using ICOOL [6] and com-

puting linear maps via finite differences.

Figures 1 and 2 show the beta functions as a function of

total momentum for a rectilinear FOFO (the Guggenheim

is similar) and the planar snake. The rectilinear FOFO and

Guggenheim operate in the passband between π and 2π
phase advance. The planar snake operates similarly, except

that the period is two cells, so what is shown in Fig. 2 is for

a phase advance from 2π to 4π. There is thus a linear res-

onance (3π) near 168 MeV/c, which despite its weakness

appears to be enough to truncate the operating passband.

One also observes a strong change in the beta functions

at the high energy end (there is a corresponding change in

the closed orbit) arising from the approach to an integer

tune. There are also indications of a coupling resonance

near 213 MeV/c.

Figures 1 and 2 also show the beta functions at the 6-D

fixed point. For the rectilinear FOFO and Guggenheim, the

beta functions are close to what is found in the fixed energy

calculation. For the planar snake, however, the beta func-

tions are very different. At the fixed point, the two betatron

tunes and the synchrotron tunes have the same fractional

part (near 0.25), and one of the transverse eigenvectors and

the longitudinal eigenvector have ellipse projections that

have nearly equal areas in the transverse and longitudinal

directions. Thus the planar snake appears to be operating

on a synchro-betatron resonance, similarly to what is de-

scribed in [7].

Energy acceptance of a lattice is important both to

achieve good longitudinal cooling and acceptance as well

as to limit losses from energy straggling. One can look at

the momentum acceptance that can be achieved for a given

beta function at the absorber. The result is shown in Fig. 3.

The planar snake has a significantly reduced momentum

acceptance compared to the other lattices. The rectilinear

FOFO (at least as designed) does not perform quite as well

as the Guggenheim for smaller beta functions.

Figure 4 shows the lossless Q for the lattices. Note

that the lossless Q is significantly lower for the rectilin-

ear FOFO than for the other lattices. Since this is mainly
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Figure 5: Dynamic aperture vs. the geometric average of

the beta functions at the 6-D fixed point. Dynamic aperture

is the average over the momentum passband of the smallest

value of Jx+Jy (normalized) beyond which there is at least

one (Jx, Jy) pair which does not survive for 20 turns.

related to the energy lost or gained in each cell, and the RF

gradients in the rectilinear FOFO are similar or larger than

those used in the Guggenheim or planar snake, one would

expect that the rectilinear FOFO could have improved per-

formance, probably via some increase in the wedge thick-

ness and subsequent tuning. This may explain the lower Q
value found for the rectilinear FOFO (maximum of 9.5 [4])

compared to the Guggenheim (maximum of 11 [2]).

Figure 5 shows the dynamic aperture plotted against the

beta function for the Guggenheim and rectilinear FOFO lat-

tices. Note that the dynamic aperture is not proportional to

the beta function for small beta (it is worse), which ulti-

mately prevents achieving smaller emittances.
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