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Abstract

Multi-objective optimization techniques are widely used

in an extremely broad range of fields. Genetic optimization

for multi-objective optimization was introduced in the ac-

celerator community in relatively recent times and quickly

spread becoming a fundamental tool in multi-dimensional

optimization problems. This discussion introduces the ba-

sics of the technique and reviews applications in accelerator

problems.

GENETIC ALGORITHM OVERVIEW

Genetic and evolutionary algorithms (GAs and EAs, re-

spectively) are examples of adapting models for processes

observed in nature to create novel approaches to solving

seemingly unrelated problems. These methods mimic bi-

ological reproduction, the theory of evolution, and the be-

havior of biological populations to solve mathematical op-

timization problems. Sets of solutions to an optimization

problem are considered successively. The solutions from

set i that more closely meet the optimization goal(s) are

considered fitter, more inclined to survive, and are used to

create the next i + 1 set of solutions. As the selection and

reproduction cycle repeats, the solutions produced are re-

fined, and the defining characteristics for the best solutions

coalesce to the optimal value(s). While not an immedi-

ately obvious method for optimization, GAs and EAs have

proven to be highly effective in solving engineering and ac-

celerator physics problems. Two recommended references

on GAs, EAs, and optimization in general are [1, 2].

Optimization Problem Statements

Commonly, optimization problems are cast as minimiz-

ing or maximizing a cost function, and optionally, the

independent variables may be subject to boundary con-

straints. Real world optimization problems tend to be

multi-objective meaning there are multiple cost functions

that must be minimized or maximized simultaneously sub-

ject to bounds and inequality constraints. Written gen-

erally, a multi-dimensional, multi-objective optimization

(MOO) problem is

Optimize fj (x1, x2, ..., xN ) j = 1, 2, ..., J,

gk (x1, x2, ..., xN ) ≥ 0 k = 1, 2, ...,K,

x
(n)
min ≤ xn ≤ x(n)

max n = 1, 2, ..., N, (1)
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where Optimize can be either Minimize or Maximize for

each objective function fj , J is the number of objective

functions to be simultaneously optimized, gk are K in-

equality constraints, and xn are the N independent vari-

ables to vary subject to a set of bounds constraints, x
(n)
min

and x
(n)
max. For a single-objective optimization (SOO),

J = 1 and K = 0. GAs and EAs can be applied to both

single- and multi-objective problems.

Solution existence and uniqueness is not guaranteed for

SOO and MOO making them difficult to perform, but

MOO has the additional complication that the objectives

may conflict, meaning a set of independent variables that

satisfies one objective goal causes another to move away

from its optimal value. An example is minimizing two ob-

jective functions that inversely depend on the same inde-

pendent variable, e.g. f1 = x1 and f2 = x−1
1 + x2 for

0.5 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. No single combination of

x1 and x2 clearly minimizes both f1 and f2 simultaneously.

In contrast, changing the problem to minimize one function

and maximize the other creates two different optimization

problems where the objectives do not conflict, and fortu-

nately, both problems have unique solutions (x1 = 0.5 and

x2 = 1 minimize f1 to 0.5 and maximize f2 to 3, while

x1 = 1 and x2 = 0 maximize f1 to 1 and minimize f2 to

1).

For the simultaneous minimization problem, each pos-

sible x1 value gives an equally valid solution to the mini-

mization problem for x2 = 0. Absent additional informa-

tion about a preferred solution or system behavior, there is

nothing to differentiate any particular solution from the rest

in the x1 interval. For instance, at x1 = 0.5 and x2 = 0,

while f2 = 2 is not its minimum value on the x1 inter-

val, f1 is minimized to 0.5. This is the best solution for

x1 = 0.5 since f2 > 2 for x2 > 0. Similarly, f1 = 1
and f2 = 1 comprise the best solution for x1 = 1. For the

remaining values of the x1 interval with x2 = 0, neither f1
nor f2 attains its individual minimum value, but their val-

ues are the optimal ones for each fixed value of x1. These

solutions for 0.5 ≤ x1 ≤ 1 and x2 = 0 are equivalent

in terms of the optimization goals, and they form the set

of solutions to this optimization problem. When objective

functions conflict, a series of individual optimizations must

be considered and solved, and the set of solutions is called

the Pareto optimal front. The Pareto optimal front is im-

portant because it elucidates trade-offs between objectives.

Comparison to Standard Techniques

Historically, standard techniques used for multidimen-

sional optimization problems are either iterative derivative-

based methods or systematic parameter scans. GAs and
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EAs are iterative but not derivative-based. They analyze a

series of relatively large sets of solutions or populations to

identify candidate solutions to produce new sets of solu-

tions. Each new population is a generation and represents

an iteration. Populations are composed of individuals, real-

izations of Eq. (1). A systematic parameter scan produces

one very large exhaustive population in a single genera-

tion, and the data are analyzed at the end. GAs and EAs

are smarter parameter scans because interleaving parameter

space sampling and objective value analysis allows them to

identify and concentrate on promising parameter space re-

gions as they progress.

Genetic Algorithm Processing

The distinguishing characteristic of GAs and EAs is the

simple but effective process by which the N -dimensional

parameter space is sampled and the resulting objective val-

ues are analyzed. By way of caveat, there is great variabil-

ity in algorithm designs, and this discussion may describe

features and concepts that are not explicitly used or are

omitted in a particular algorithm or application. The gen-

eral process starts with an initial population created from a

set of independent variable values that are randomly pro-

duced within the bounds constraints. This generation is

a random sample of the N -dimensional parameter space.

The objective values are ranked against the optimization

goals, and a new population is generated from favorably

ranked individuals. The cycle of ranking objectives and

generating new populations repeats until the optimization

goals are met within some specified tolerance or the maxi-

mum number of generations limit is reached.

Fitness is used to rank individuals in a population and

indicates the relative strength of an individual. It is a func-

tion of the objectives and can include the constraints. Its

exact form varies with algorithm and application. In the

single objective case, the fitness function can be the objec-

tive value itself. Alternatively, fitness may be a measure of

how well the objective values meet the optimization goals

and adhere to the problem constraints [1, 3, 4]. Typically,

stronger individuals have larger fitness values, but not al-

ways [3]. In some cases, the fitness concept is not explicitly

invoked [5] but can be assumed to be the objective function

value(s).

Some general fitness definitions for MOOs use the dom-

inance concept [1] because it is suited to systems with con-

flicting objectives. An individual is said to dominate an-

other if it is better in at least one objective and no worse

in the others where the sense of “better” and “no worse”

depends on the optimization goal for each objective. For

an objective to be minimized, better means “<”, and no

worse means “≤”. In the minimization example above,

A = (x1, x2, f1, f2) = (0.5, 0, 0.5, 2) dominates B =
(0.5, 1, 0.5, 3) and C = (1, 1, 1, 2) but not D = (1, 0, 1, 1).
Also, D dominates C but not A or B. B and C do not

dominate each other, A, or D. If a dominance-based fit-

ness function, for example, tallies for each individual the

number of other individuals in a generation that dominate

it, then the tally can be used to identify individuals that best

approximate the Pareto optimal front because their tallies

will be zero [3]. Applied to A, B, C, and D, the tallies are

0, 1, 2, and 0, respectively. A and D are the best estimates

of the Pareto optimal front and are in fact on the Pareto

optimal front. The individuals on the Pareto optimal front

are said to be non-dominated with respect to each other and

dominate at least one other individual in the generation.

With fitness values calculated, the selection and repro-

duction process starts. First, individuals are chosen to form

the mating pool through a competition mechanism. For

example, in tournament selection, individuals are picked

at random, and a comparison of fitness values decides the

winner. Only competition winners are placed in the mating

pool, and only members of the mating pool are selected to

reproduce. Thus it is possible to lose good individuals ei-

ther through losing a competition or failing to be selected to

participate. Elitist strategies counter this by giving the best

individuals an advantage specific to the algorithm. Strength

Pareto Evolutionary Algorithm 2 (SPEA2) [3] creates an

archive of past and present best individuals, and only in-

dividuals from the archive are considered for the mating

pool.

Next, individuals are chosen pair-wise from the mating

pool to produce offspring through crossover, also known as

recombination. GAs typically operate on binary encoded

string representations of the independent variables, while

EAs operate on vectors of decimal values. In the GA form,

crossover mirrors the biological process. The two parent

strings are split at the same randomly selected locations,

and the substrings are exchanged to make the offspring. In

the EA equivalent, the values of the two parents are directly

exchanged to create the offspring, or linear combinations

of the parent values are passed to the offspring. Offspring

mutation follows. For the binary string, mutation is a ran-

domly flipped bit (0 → 1 or 1 → 0), and a randomly ap-

plied and generated offset for the EA version. Probability

density functions (pdfs) determine the behavior of the EA

crossover and mutation. The pdf configuration parameters

can be tuned to affect the convergence behavior.

Differential Evolution (DE) [5] is often used for SOOs in

accelerator applications while SPEA2 and Non-Dominated

Sorting Genetic Algorithm II (NSGA-II) [4] are preferred

for MOOs. SPEA2 and NSGA-II are elitist strategies, and

now, an elitist DE is available for MOOs [6].

BEAMLINE COMPONENTS

Most beamline component GA- and EA-based design

and optimization applications center on magnets and radio

frequency (RF) and acceleration related devices. Early ex-

amples concentrate on magnet design and construction, and

later ones are geared more toward acceleration systems.

Two magnet examples are wiggler and undulator mag-

net ordering and superconducting magnet design. Wig-

gler and undulator magnets are constructed from several

smaller dipole magnets, and it is important to arrange the

constituent magnets to minimize field errors. GAs and EAs
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can search through the many magnet order permutations

and find the optimal arrangement [7], and GA-based mag-

net sorting and shimming continue to be integral to wiggler

and undulator construction [8, 9, 10]. One of the earliest

uses of Pareto optimality is a GA-based superconducting

magnet design tool [11]. The tool identifies and creates

multiple similar conceptual magnet designs meeting speci-

fied criteria that a magnet designer can then further evalu-

ate with respect to manufacturing considerations. With this

tool, a new magnet coil design was identified for use in the

Large Hadron Collider.

The first application of GAs to RF devices was to op-

timize cavity designs based on higher order mode and

resonance requirements [12]. With the renewed interest

in GA and EA methods, the number of RF cavity opti-

mizations has grown recently to include a variety of RF

and superconducting RF (SRF) cavity designs: crab cavi-

ties [13], spoke cavities [14], choke-mode damped struc-

tures [15], microwave tubes [16], and klystron interac-

tion structures [17]. Lastly, geometric dimension and rela-

tive dielectric permittivity optimizations for cylindrical and

slab wakefield accelerators provide insights into the trade-

offs between transformer ratio and maximum accelerating

wakefield electric field amplitude [18].

ACCELERATOR DESIGN

There are two modes of accelerator design using GAs

and EAs. The first assumes a machine element layout

where the field behavior of the magnets and accelerating

devices is known, and the optimization searches for optimal

set points, field amplitudes and phases, and element spac-

ings to achieve specific beam quality and operating con-

ditions. In other words, the optimization acts to tune the

machine. The other mode builds on the first additionally

varying physical features of beamline elements and sys-

tems to discern optimal designs or requirements for them;

beamline element and operational set point optimizations

are combined. Most applications fall in the first category,

and with the growing appreciation for the power and flexi-

bility of GAs and EAs in the accelerator field, the number

of more holistic machine design applications is growing.

Pareto optimality is especially important here because the

front provides information about the many possible con-

figurations and capabilities letting the designer choose the

most suitable combination. In some cases, the front has

even revealed unorthodox operating schemes that are com-

parable to or better than the standard solutions [19, 20, 21].

The ability to optimize a known machine layout is ex-

tremely useful. This form of optimization is well estab-

lished, and only a fraction of the many examples will

be highlighted here. The earliest application determines

the quadrupole settings in injection and transfer lines for

BESSY-II [22].

The tuning approach is used in mainly four ways.

The most obvious use establishes the expected perfor-

mance of a proposed or upgraded machine. A sam-

ple shows: positron momentum selection in a continuous

wave positron source [23]; dynamic aperture optimization

for a storage ring upgrade [24]; asymmetric distribution

of longer insertion device straight sections in a storage

ring light source [25]; a superconducting tape undulator-

based light source [26]; a two-loop compact energy recov-

ery linac (ERL) [27]; an electron linac for a gamma-ray

source [28]; compression schemes for a free electron laser

(FEL) [29]; and a bunch compressor for electron beam slic-

ing [30].

Second, optimizing operational settings and relative el-

ement spacing can establish that a particular technology is

suitable for a new or more demanding accelerator applica-

tion. Most examples are direct current (DC) and RF gun

injectors for FEL [31, 32, 33] and ERL light sources [34].

Third, accelerator physicists look for performance im-

provements for existing machines through alternative ma-

chine settings. Storage ring light sources benefit from this

most to optimize brightness [20] and increase dynamic and

momentum apertures [21, 35].

Lastly, this mode can identify tuning knobs or their set-

tings to correct or avoid operational problems. Identifi-

cation is needed for storage ring orbit bumps [36] and

collider final focus optics tuners [37]. Finding knob set-

tings is useful for controlling transport optics for muon

experiments [38], restoring machine performance until

failed components can be repaired [39], protecting equip-

ment [40], and making machines insensitive to destructive

beam instabilities such as beam break-up [41].

The second more encompassing accelerator design ap-

proach allows beam and beamline element performance

to be considered together. This flips the model described

above determining the suitability of a given technology

or machine layout for an application. Instead the desired

beam performance directly drives element design. Two ad-

vance examples of this approach are a preliminary spalla-

tion neutron source accumulator ring design study [42] and

a muon solenoidal decay channel optimization [43].

The watershed accelerator physics applications showcas-

ing the power of EAs, GAs, and Pareto optimality in gen-

eral and this combined beam and element performance op-

timization are a laser profile and DC gun injector optimiza-

tion for an ERL light source [19] and a damping ring optics

evaluation tool that creates all viable optics layouts fitting

in a given machine circumference [44]. They demonstrate

that automating accelerator design is possible because GAs

and EAs can manage the complexity of these problems and

organize the results in a way to help the accelerator de-

signer choose the best design among all possible designs

meeting a set of criteria. The success and flexibility of these

two optimizations led to the explosive growth in accelerator

EA- and GA-based optimizations of all kinds. These two

examples led to beam performance-based systems devoted

to finding optimal: geometries for injector guns [45, 46]

and accelerating elements [47, 48]; field profiles for storage

ring dipoles [49] and fixed-field alternating gradient accel-

erator magnets [50]; undulator tapering profiles [51]; and

an RF pulse time structure to compensate for beam loading
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in a linac [52].

REAL TIME AND DIAGNOSTIC

APPLICATIONS

Two very successful real time applications of GAs are

photocathode laser profile generation [53, 54] and phase

space reconstruction [55]. Both examples configure sev-

eral similar or identical elements. The shear number of per-

mutations on the settings precludes enumerating and eval-

uating each setting in turn, so a GA is used to sample the

available permutations and identify an optimal configura-

tion. A third example extracts cavity parameters from pass

band data for an SRF cavity installed in a multi-cavity as-

sembly [56].

ACCELERATOR DESIGN TOOLS AND

COMPUTATIONAL CONSIDERATIONS

Execution time is an important factor to consider when

choosing GA and EA tools and the underlying compu-

tational structure. These population-based methods as-

sume computations for individuals are independent and

self-contained, so they are amenable to parallelization. The

maximum time to calculate all results for a single individ-

ual determines the level of necessary parallelization. If an

individual is modeled with a few finite polynomial expres-

sions for example, serially processing individuals in a pop-

ulation is reasonable, and optimization extensions for Ex-

cel [57], MATLAB, and Mathematica are appropriate to

use. Most problems in accelerator physics require simula-

tion codes to model the underlying physical system and in-

volve non-negligible execution times. For these situations,

the results for individuals must be produced in parallel.

Several parallel frameworks are available affording var-

ious levels of flexibility and abstraction. The basic de-

sign has two main parts. The first is the GA or EA

wrapped around a simulation job management system. The

job management system handles communication between

the optimization processing and the simulation code(s),

and it dispatches simulations for individuals to avail-

able computer resources. Program and script based sys-

tems include: Alternate PISA (A Platform and Program-

ming Language Independent Interface for Search Algo-

rithms [58]) (APISA) [19, 45] and variations from TRI-

UMF [59] and Jefferson Lab [46], geneticOptimizer [60],

and OPT-PILOT [61]. APISA and variants mainly use

SPEA2, and the others use NSGA-II. Note OPT-PILOT has

a Python-based graphical interface for viewing Pareto op-

timal fronts and associated decision variable values.

The parallel frameworks commonly assume access to a

large number of compute nodes found in batch farm and

high performance computer cluster configurations. Alter-

natively, idle desktop computers in an organization can be

co-opted with APISA or Condor [17], a system that coor-

dinates, monitors, and dispatches simulations to underuti-

lized desktop computers. The advent of commercial cloud

computing resources may provide on-demand high perfor-

mance computer clusters to extend existing systems or ob-

viate the need for local installations [62].

Some accelerator simulation systems include GAs and

EAs in their optimization suite: TAO [63], COSY-GO [64],

G-optimizer in TRACK [65], GeneticTRACY [62], ele-

gant COGA [66], and a symbolic beam propagator [67].

Lastly, libraries are available such as PGAPack [68] and

pikaia [69] to build custom systems.

CONCLUSION

The use of GAs and EAs is well established in accel-

erator physics as demonstrated by the variety of applica-

tions and tools presented here. The expanded capability of

GAs and EAs to directly solve MOOs and identify inher-

ent trade-offs has substantially increased their utility in the

field and enables automated optimization of systems that

are complex in terms of dynamics and the number of vari-

ables involved. The basics of GAs and EAs have been

introduced to facilitate understanding of how these algo-

rithms work and interpreting the results they produce.
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