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Abstract

The proceeding proposes a derivation of the Vlasov-
Poisson equation where the distribution function is splitted
in a main part standing for the core and a fluctuating part
standing for the halo, with which the kinetic theory of halo
formations and core-halo dynamics are analysed.

INTRODUCTION

High-power hadron beams are more and more requested
in multiple research fields like fusion material studies,
neutrino physics, nuclear transmutation, accelerator-driven
systems. Among the most recent projects, the IFMIF ac-
celerators [1] break the record of high intensity, leading
to a multi-MW beam power at relatively low energy. The
concern for such accelerated beams is the predominance of
the self-field energy upon the beam energy. In these condi-
tions, the space charge effect is at its maximum, which trig-
gers different non-linear mechanisms implying emittance
growth, halo formation and sudden particle lost. The chal-
lenge is then to be able to control the total beam size, to
maintain it well inside the beam pipe, and to avoid particle
losses on its wall at the level of 10−6 in order to preserve
hands-on maintenance. Careful studies of the dynamics
of high intensity charged particles are thus mandatory to
better understand and characterise the beam non-linear be-
haviour.

In the space-charge dominated regime, the space-charge
effects result in emittance growth and halo formation,
which contribute to beam losses. A change of focusing lat-
tice or inadequate knowledge of proper injection conditions
can cause a mismatch between the beam and the transport
system. This mismatch may result in an oscillation of the
beam envelope and generally excite a superposition of the
envelope eigenmodes. These envelope modes possess ad-
ditional free energy compared with the stationary distribu-
tion. Particles with appropriate oscillation frequencies can
resonate with these envelope modes through the so called
parametric 2 : 1 resonance and attain large amplitude to
form a halo [2]. These halo particles extract the energy
from the envelope modes and convert free energy from mis-
match into thermal energy, which causes beam emittance
growth. The goal of this proceeding is proposes a deriva-
tion of the Vlasov-Poisson equation where the distribution
function is splitted in a main part standing for the core and a
fluctuating part standing for the halo, with which core-halo
interactions will be analysed.
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CORE-HALO EQUATIONS
The beam is assumed to propagate with a constant axial

velocity vzêz , so that the axial coordinate s = z = vzt
play the role of time. The external focusing field is given
by B = B0êz and is used to compensate the repulsive
Coulomb force between the beam particles. It is con-
venient to work in the Larmor frame [3] which rotates
with respect to the laboratory frame with angular velocity
ΩL = qB0/2γbmc, where c is the speed of light in vacuo,
and q, m, and γb = 1/

√
1− β2

b are the charge, mass and
relativistic factor of the beam particles respectively.

A collisionless charged particle beam is usually de-
scribed in a self-consistent mean-field approximation by
the Vlasov-Poisson system :

dfb
dt

=
∂fb
∂t

+ v · ∂fb
∂r

+ F · ∂fb
∂v

= 0, (1a)

F = −κzr−∇φ, (1b)
∇2φ = −4πqnb(r, s). (1c)

where Nb is the number of particles per unit axial length,
r is the position vector in the tranverse plane, v = dr

ds
is the transverse velocity, nb(r, s) = qb

∫
dv2fb(r,v, s)

is the transverse beam density, κz0 = qB0/2γbβbmc
2 is

the focusing field, and K = 2q2B2
0/γ

3
b v

2
zm

2c2 is the per-
veance, which is a measure of the beam space charge. In
Eq. (1), φ is a scalar potential that incorporates both self-
electric and self-magnetic fields, Es and Bs. We shall take
zero of the scalar potential to be at rw, the position of the
conducting channel wall. The distribution function is nor-
malized so that

∫
dv2dr2fb = 1. In the Larmor frame,

the system corresponds to a two dimensional non-neutral
plasma of pseudo particles of mass m = 1 and charge
q =

√
K/Nb interacting by a repulsive logarithmic poten-

tial φ(r) = −q2 ln(r/rw) confined in a parabolic potential
well of U(r) = κzr

2/2.
The Vlasov equation (1) express the conservation of the

distribution function in phase space. We assume that the
initial condition in phase space consists of a patch of uni-
form distribution function (f0 = η0) surrounded by vac-
uum (f0 = 0). After some evolution, the patch mixes with
vacuum and the coarse-grained (i.e. locally averaged) dis-
tribution function f̄ takes values between 0 and η0. The fact
that the coarse-grained distribution function cannot exceed
the maximum value η0 of the initial condition is responsi-
ble for an effective “exclusion principle ”leading to degen-
eracy effects. This degeneracy, resulting from the incom-
pressibility of the Vlasov equation in phase space , was first
recognized by Lynden-Bell [4] is his study of equilibrium.

Suppose that the coarse-grained [5] distribution function
is the distribution fc for core of the beam and the fluctua-
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tions of the distribution function is the distribution fh for
the beam halo [6, 7].

We introduce the decomposition fb = f̄b + f̃b [fb =
fbc + fbh ] where f̄b [fbc ] is the coarse-grained distribution
function and f̃b [fbh ] is the fluctuations. We assume that
f̄b [fbc ] results from the statistical average so that f̄b = f̄b.
Taking the local average of the Vlasov equation we obtain
a convection-diffusion equation:

∂fbc
∂t

+ v · ∂fbc
∂r

+ Fc ·
∂fbc
∂v

= −∂J
∂v

, (2a)

J = Fhfbh , (2b)

for the core distribution function, with a diffusion current
J = Fhfbh related to the correlations of the fine-grained
fluctuations [8] (to describe the perturbations inside the
core and to describe the retroaction of the halo on the
core [7]). Note that the diffusion occurs only in velocity
space. There is no diffusion in position space since the
velocity v is a pure coordinate and therefore does not fluc-
tuate. The problem in hand consists in determining the dif-
fusion current J. Since the diffusion current J = Fhfbh
is related to the fine-grained fluctuations of the distribu-
tion function, any systematic calculation starting from the
Vlasov equation must necessarily in corporate the evolu-
tion equation of fbh . This equation is simply obtained by
substracting equation (1a) from (2a) :

∂fbh
∂t

+ v · ∂fbh
∂r

+ Fc ·
∂fbh
∂v

=

−Fh ·
∂fbc
∂v
− Fh ·

∂fbh
∂v

+
∂Fhfbh
∂v

(3a)

The essence of the quasi-linear theory is to assume that
the fluctuations are weak [9] and neglect the non-linear
terms in (3) altogether. In that case (2a) and (3) reduce
to the coupled system:

∂fbc
∂t

+ v · ∂fbc
∂r

+ Fc ·
∂fbc
∂v

= −∂Fhfbh
∂v

, (4a)

∂fbh
∂t

+ v · ∂fbh
∂r

+ Fc ·
∂fbh
∂v

= −Fh ·
∂fbc
∂v

,(4b)

Physically, these equations describe the coupling between
the core (coarse-grained distribution fbc ) and the halo (the
small-scale fluctuations fbh ).

To resolve the equations (4a) and (4b) we assume dur-
ing beam evolution, the system tends to maximize its rate
of entropy production while satisfying all the constraints
imposed by the dynamics.

Relaxation Process of the Beam Core and Halo
Formation

The evolution of the system equations (4a) e (4b) is
extremely complicated. Although the dynamics is colli-
sionless, the fluctuations of the electromagnetic potential
are able to redistribute energy between beam particles and

provide an effective relaxation mechanism on a very short
timescale (violent relaxation [4]).

The system develops an intricate filamentation in phase
space (phase mixing). In physical space, this mixing pro-
cess is associated with the heavily damped oscillations of
beam away from mechanical equilibrium. In a strict sense,
the distribution function fb = fbc + fbh does not reach an
equilibrium distribution but develops smaller and smaller
filaments. However if we introduce a coarse-graining pro-
cedure and locally average over the filaments, the coarse-
grained distribution function f̄b is expected to reach a sta-
tionary state on a short timescale. It is usually advocated
that this metaequilibrium state is a particular stationary so-
lution of the Vlasov equation [10]. A statistical theory ap-
propriate for this process of violent relaxation has been de-
veloped by Lynden-Bell [4]. Unfortunately, the statistical
prediction of Lynden-Bell is limited by the problem of in-
complete relaxation [11]. Beams tend towards the equilib-
rium state during violent relaxation but cannot attain it: the
fluctuations of the potential die away before the relaxation
process is complete [12].

Equation (4b) is first solved formally with the help of
Green functions [13]. This gives rise to an iterative process.
This iterative process is truncated to quadratic order and the
result is substituted back into (4a). The diffusion current J
does not have yet a closed form as it involves the equal-time
correlation function. To close the system, we assume that
the fluctuations of the distribution function in two different
macrocells are decorrelated. The resulting equation is now
self-consistent [5].

Our working hypothesis is that during the stage of vio-
lent relaxation, the particles of beam extract their energy
from the rapid fluctuations of the eletromagnetic field. By
this process, some particles may acquire very high energies
and escape from the beam forming the halo.

Process of the Core-Halo Interactions
With the halo formation, the relaxation of system from

equilibrium becomes incomplete [14]. It starts a process
of interaction core-halo where the terms on the right side
of the equations (4a) and (4b) dominate the dynamic. The
field energy generated by the core interact with the halo and
the fluctuations tend to become weaker. The core reaches a
stationary state [15].

Relaxation processes of Beam Halo via thermal
bath

As the core is quasi-equilibrium state and the fluctu-
ations are weakening, the core will serve as a thermal
bath to the halo. This allows us to we find a quasi-
equilibrium solution for the system core-halo in a relaxed
state [16, 17, 18].

CONCLUSIONS
The maximum transportable current density of an ion

beam with high space-charge intensity propagating in a pe-
riodic focusing lattice is a problem of practical importance.
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Accelerator applications such as Heavy Ion Fusion (HIF),
High Energy Density Physics (HEDP), and transmutation
of nuclear waste demand a large flux of particles on target.
A limit to the maximum current density can result from a
variety of factors: instability of low-order moments of the
beam describing the centroid and envelope, instability of
higher order collective modes internal to the beam, growth
in statistical phase-space area (rms emittance growth) and
excessive halo generation.

The most important examples of a nonstationary beam
are a beam with an rms mismatch, a nonstationary distribu-
tion function (the distribution function is not a solution of
the stationary Vlasov equation), and a misaligned beam. If
the beam is initially nonstationary, it has a higher average
energy per particle than the stationary beam. The energy
difference represents the free energy that can be thermal-
ized by nonlinear space charge forces, collisions, or insta-
bilities. As a result of such a process, the emittance in-
creases as the beam relaxes toward its final quasistationary
state.

The deviation of beam distribution from the stationary
state may be understood as the main cause of halo forma-
tion. Whenever a beam is not in its own stationary state, it
naturally tries to approach closer to there, minimizing the
nonlinear field energy. During this process, plasma oscil-
lations are excited in the beam core, driving a portion of it
into a halo. Inversely speaking, if a beam injected into a
uniform channel is fine grainedly matched to it, there is no
reason to expect the development of a halo unless the dis-
tribution itself is intrinsically unstable against perturbation.
While several different factors have been considered as the
possible sources of halo formation, it seems, after all, that
the important point is how much a beam is deviated from
the stationary state

In Linac the effective phase space volume occupied by a
beam can grow rapidly if the beam intensity is sufficiently
close to the space charge limit and if a source of instability
is available. In principle there are three sources of instabil-
ity: in a continuously focused beam it can be a nonmono-
tonic distribution function, like the K-V distribution; in two
or three dimensional beams it can be an anisotropic distri-
bution with different emittance and/or energy in two phase
planes; in addition, periodic focusing can act as a source
if an eigenoscillation is in resonance with the period of fo-
cusing.

In this proceeding a derivation of the Vlasov-Poisson
equation where the distribution function is splitted in a
main part standing for the core and a fluctuating part stand-
ing for the halo, with which the kinetic theory of halo for-
mations and core-halo dynamics are analysed.
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