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Abstract
Cooling of medium energy protons is critical for the pro-

posed Jefferson Lab Medium Energy Ion Collider (MEIC).
We present simulations of electron cooling of protons up to
60 GeV. In the beam frame in which the proton and elec-
trons are co-propagating, their motion is non-relativistic.
We use a binary collision model which treats the cooling
process as the sum of a large number of two-body colli-
sions which are calculated exactly. This model can treat
even very close collisions between an electron and ion with
high accuracy. We also calculate dynamical friction using
a δf PIC model. The parallel code VSim (formerly Vorpal)
is used to perform the simulations. We compare the fric-
tion rates with that obtained by a 3D integral over electron
velocities which is used by BETACOOL.

ELECTRON COOLING
In the simplest form of electron cooling [1], an electron

beam is created with the same γ as a relativistic ion beam
which we wish to cool. The two beams are then made to
co-propagate over a section of a storage ring, the cooling
section. In the beam frame traveling with the average ve-
locity of the particles, their velocities are non-relativistic,
and the particles interact by means of Coulomb collisions.

This paper explores the amount of dynamical friction
which can be obtained in an (unmagnetized) cooling sec-
tion of the Jefferson Lab Medium Energy Ion Collider. The
particles to be cooled are protons with γ = 65.4. The cool-
ing section is s = 60 m long. These simulations are done
in 3D, where x and y are transverse coordinates and z is
the direction of beam propagation.

The bunched electron beam is non-uniform, but suppose
we consider a small region only a few Debye lengths wide
in the center of the electron bunch. In this region, the
electron density is nearly constant. We consider a distri-
bution of electrons which is uniform in space and has a
Maxwellian distribution in velocity
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ne

(2π)3/2σxσyσz
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(1)
where ne is the density in the center of the electron
bunch. In the beam frame the RMS velocities �σ are non-
relativistic, specific values are given in Table 1. Note that
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Table 1: Electron Beam Parameters Used in the Simula-
tions, all Parameters are in the Beam Frame

parameter symbol value unit

electrons per bunch 2.5 109 elec.

peak density ne 1.32 1015e/m3

plasma freq. ωp 3.26 108/sec

plasma per. 3.07 nanosec

interaction time τ 3.06 nanosec

trans. RMS bunch size rx 303 μm

long. RMS bunch size rz 1.3 m

trans. RMS velocity σx 2.35 105 m/sec

long. RMS velocity σz 0.36 105 m/sec

trans. Debye length λx 114 μm

long. Debye length λz 17.5 μm

z is the direction of beam propagation, and because this is
an accelerated beam it is not isotropic, and σz < σx = σy .

Consider now a single ion moving at velocity �vion, and
let �vrel = �vion − �v be the velocity of each electron relative
to the ion. Assuming each collision is symmetric in time,
the dynamical friction force on the ion can be calculated by
the 3D integral over the electron velocity space [2]

�F‖ = −neZ
2e4

4πε20me

∫ ∞

−∞
Λ

�vrel
|�vrel|3 f0(�v) d

3�v. (2)

Here Z is the ion charge number (for protons, Z = 1),
e < 0 is the electron charge, and me is the electron mass.
In the simplest case, the Coulomb logarithm

Λ = log(ρmax/ρ⊥), (3)

where ρmax and ρ⊥ are often called “the maximum and
minimum impact parameters”. This terminology is un-
fortunate, because equation (2) actually includes contribu-
tions from collisions with arbitrarily small impact parame-
ters [2]. ρ⊥ is the impact parameter for 90 degree scattering

ρ⊥(�vrel) =
Ze2

4πε0me|�vrel|2 . (4)

In the actual beam, collisions with arbitrarily small im-
pact parameters can occur. In simulations, the problem is
that very small impact collisions are rare, and there may not
be enough of them to accumulate good statistics. There-
fore, in simulations it is advantageous to introduce a cutoff
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ρc, and to ignore collisions with impact parameter less than
ρc. A modified Coulomb logarithm for equation (2), which
can take into account ρc as well as the finite interaction
time is given by [2]

Λ =
1

2
log

[(
ρ2max + ρ2⊥
ρ2⊥ + ρ2c

)(
ρ2c + d2

ρ2max + d2

)]
, (5)

where d = |�vrel|τ/2 and τ = s/(γβc) is the interac-
tion time in the beam frame. Note that the Coulomb log-
arithm (5) reduces to (3) in the case where ρc = 0 and
d � ρmax � ρ⊥.

In general, the Coulomb logarithmΛ is different for each
electron because of the dependence of ρ⊥ and d on �vrel.
We cannot hope to calculate the integral (2) analytically,
but it is easily calculated numerically because the velocity
distribution f0(�v) decays exponentially.

If ωp = (nee
2/(meε0))

1/2 is the plasma frequency,
then the Debye lengths in x, y and z, respectively, are
λx = σx/ωp, λy = σy/ωp and λz = σz/ωp. For this
accelerated beam the longitudinal Debye length is consid-
erably less than the transverse Debye length.

Over one passage through the cooling section, suppose
we need to accumulate more than Nc collisions of impact
parameter less than ρc in order to get good statistics on
these collisions. In [2] it is shown that for the isotropic
case, Nc and ρc are related by the formula

ρc =

√
Nc

〈|�vrel|〉τπne
, (6)

where 〈|�vrel|〉 is the average magnitude of the relative ve-
locity over all electrons. This equation can be used in the
numerical models to set the cutoff impact parameter ρc.

To estimate the dynamical friction in the actual beam,
we numerically evaluate the friction (2) using the Coulomb
logarithm (5) with ρc = 0 and ρmax = 3rx, where rx is
the transverse RMS bunch size. Figure 1 shows the friction
force in eV/m obtained for protons moving at various ve-
locities. If the electron velocity distribution were isotropic,
Figure 1 would be radially symmetric in |�vion|. Instead it
shows enhanced friction longitudinally, and the maximum
friction force of 0.659 eV/m occurs for a proton moving
purely longitudinally with vz = 0.90× 105 m/s.

SIMULATION MODELS
Electron cooling is an extremely weak effect, and dif-

ficult to capture numerically. The Debye shielding cloud
around one proton has a magnitude on the order of the pro-
ton charge, |e|. Therefore, the perturbation in the electron
bunch due to the presence of a single proton is nine orders
of magnitude smaller than the charge of the electron bunch,
(2.5× 109)e.

The first model we consider is the binary collision
model [2]. The Coulomb collisions are modeled as an n-
body problem, although we ignore electron-electron inter-
actions. The interaction between each ion and electron is
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Figure 1: A contour plot of the friction force in eV/m as
a function of the longitudinal and transverse ion velocity.
This figure is only shown in one quadrant because it is sym-
metric in the other three.

calculated exactly as a 2-body problem, with the contribu-
tions summed over all particles. This produces an n-body
solver which can accurately model any 2-body collision
with a constant time step [2]. To accurately model 3-body
and higher collisions the time step must be decreased dur-
ing these interactions, however these collisions are rare and
do not contribute appreciably to dynamical friction.

In order to reduce the noise in these simulations, we add
a positron over each electron with identical location and ve-
locity. When an electron and positron interact with a pro-
ton, the diffusive velocity kicks cancel while the dynamical
friction accumulates. Without this trick the dynamical fric-
tion would be dominated by particle noise.

Figures 2 and 3 show friction estimates from the bi-
nary collision model, the two figures are for purely lon-
gitudinal or transverse motion, the two axes of Figure 1.
However, the theoretical curves are not the same as in
Figure 1, because we have adjusted the theory to take
into account the size of the numerical domain (L), and
use a ρc corresponding to Nc = 5. The simulation do-
main is a cube L = 800 μm on a side, and in [2] it is
shown that we should use ρmax = min{3rx, 0.43L} and
d = min{|�vrel|τ/2, 0.43L}. These modifications of the
Coulomb logarithm (5) reduce the friction by about 30%
compared with the values in Figure 1. The theoretical fric-
tion values compare well with those predicted by the binary
collision model. The error bars are derived by comparing
friction rates for multiple ions. In the transverse case (fig-
ure 3) the errors can be large, probably because the elec-
trons are hotter transversely (σx > σz).

The second model we consider is a linear δf PIC model
[3–5]. We consider the shielding to be a perturbation from
the equilibrium Vlasov-Poisson equation. The perturba-
tion is modeled using weighted particles, where the parti-
cle weight represents the perturbation and all weights start
at zero. The δf particles move in response to background
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Figure 2: Theoretical longitudinal friction, eq. (2) versus
that obtained from the binary collision model.
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Figure 3: Theoretical transverse friction versus that ob-
tained from the binary collision model.

fields, and their weights evolve to capture the shielding.
The ions move in the electric field of the δf particles using
the Boris push [6]. In all cases, the average force on each
ion is calculated from the velocity change of the ion over
the run. We note that a force of 0.5 eV/m results in a pro-
ton velocity change of 0.15 m/s over the cooling section, or
about 1 part in 106 of the proton beam frame velocity.

Figures 4 and 5 show dynamical friction results for the
δf model. The δf model uses a different domain size which
is not cubical, therefore in the theoretical model we have
inserted a different L. The error in the δf method is often
very small, because different protons behave similarly. The
δf method eliminates much of the particle noise present in
the binary collision model.

SUMMARY
Theoretical estimates of dynamical friction (2) have been

confirmed by two numerical simulations. The theoretical
model includes effects from the finite interaction time τ ,
and also effects present in simulations such as finite domain
size L and a lower cutoff in impact parameter, ρc. The nu-
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Figure 4: Theoretical longitudinal friction, eq. (2) versus
that obtained from the δf model.
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Figure 5: Theoretical transverse friction versus that ob-
tained from the δf model.

merical simulations agree well with the theoretical model
when we insert appropriate values of these parameters.
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