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Abstract
Polarized proton beams have been one of the essential el-

ements in fundamental research such as unveiling the deep

secret of proton spin structure. Polarized proton beams can

also be the tool for direct measurement of the proton’s elec-

tric dipole moment (EDM). However, due to the interaction

between spin motion and electric and magnetic fields, it is

very challenging to overcome various depolarizing mech-

anisms through acceleration, and necessary spin manipu-

lations at a store energy to meet the physics program re-

quirements. Several decades of efforts have been devoted

to develop techniques to preserve polarization and spin ma-

nipulation, as well as further our understanding of spin dy-

namics. These efforts directly led to the successful spin

program at the Brookhaven Relativistic Heavy Ion Collider

(RHIC), the world’s first high energy polarized proton col-

lider. This tutorial presentation introduces basic physics

which governs the spin dynamics in accelerators. A brief

history of polarized protons development, as well as what

have been achieved at RHIC are also reported.

INTRODUCTION OF SPIN DYNAMICS
BASICS

Just like charge and mass, spin is also an intrinsic prop-

erty of elementary particles. Spin vector �S for a particle is

then defined as
�S = 〈ψ|�σ|ψ〉, (1)

where �σ is the Paul matrices, and ψ is the particle spin state.

Proton, a spin of 1
2 particle, has two eigenstates, i.e. ψ+ =

| 12 ,+ 1
2 〉 (up state) and ψ− = | 12 ,− 1

2 〉 (down state). The

intrinsic magnetic moment of a particle is then given by

�μ = g
e

2m
�S (2)

where e and m are the electric charge and rest mass of the

particle. g-factor for a perfect point-like particle is 1
2 . For

proton, the anomalous g-factor G = g−2
2 is 1.7928474.

For a beam of spin- 12 particles, polarization P , on the

other hand, is a classical concept defined as

P =
N+ −N−
N+ +N−

(3)

whereN± are the number of particles in the two spin states,

respectively [1].

In a circular accelerator, the spin motion is governed by

the Thomas-BMT equation [2]. In the frame of particles
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orbital revolution, it is given by

d�S

dt
=

e

γm
�S× [Gγ �B⊥+(1+G) �B‖+(Gγ+

γ

γ + 1
)
�E × �β

c
],

(4)

where �S is the spin vector in the particle’s rest frame, �B⊥
and �B‖ are the transverse and longitudinal components of

the magnetic fields in the laboratory frame with respect to

the particle’s velocity �βc, �E is the electric field particle

encounters and γ is the relativistic Lorentz factor. Here,

Eq. 4 shows that in a perfect planar circular accelerator, the

spin vector precesses Gγ times in one orbital revolution.

Qs = Gγ is then defined as spin tune.

In general, the effect on spin motion from electric field

in an accelerator is negligible. Equation 4 can then also be

expressed as

d�S

ds
= �n× �S = [Gγŷ+Gγ

Bx

Bρ
x̂+(1+G)

Bs

Bρ
ŝ]× �S, (5)

where x̂, ŷ, ŝ are the unit vector along the direction of

radial, vertical and longitudinal, respectively. ds = ρdθ,

where θ is the bending angle. The equation of motion for

the spin state in Eq. 1 also known as spinor for a 1
2 particle

is
dψ

dθ
= − i

2
(�σ · �n)ψ = − i

2
Hψ. (6)

For a constant H , Eq. 6 can be rigorously solved as

ψ(θ2) = e−
i
2H(θ2−θ1)ψ(θ1) =M(θ2 − θ1)ψ(θ1) (7)

where M(θ2 − θ1) is a 2 × 2 spinor transfer matrix. For

a main bending sector dipole, the spinor transfer matrix is

just M(θ2 − θ1) = e−
i
2Gγ(θ2−θ1)σ3 . For a thin quadruple,

the spinor transfer matrix is M = e−
i
2 (1+Gγ)klyσ1 , where

kl is the normalized integrated strength of the quadrupole

and y is the vertical displacement of the particle from the

center of the quadrupole [1]. For any spin rotator which

rotates spin vector by φ around an axis n̂rot is M =
e−

i
2φn̂rot·�σ . In general, in a circular accelerator, the one

turn spin transfer matrix for a particle on the closed orbit is

M = e−
i
2Qs2π�σ·n̂co , (8)

where Qs is the spin tune, and n̂co is the stable spin direc-

tion. Equation 8 shows that for the particle’s spin vector

always returns to the same direction if it is initially aligned

with the stable spin direction n̂co. Otherwise, the spin

vector just simply precesses around the stable spin direc-

tion n̂co Qs times per orbital revolution. For a particle in

a perfect circular accelerator where it only sees vertically

aligned guiding magnetic fields, the stable spin direction is

vertical and spin tune is Qs = Gγ, linearly proportional
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to the particle’s energy. With the presence of any localized

spin kick of ψ around an axis of ne at location θ , the one

turn transfer spinor transfer matrix of a particle on closed

orbit then becomes

M(θ + 2π, θ) = e−
i
2Gγ(2π−θ)σ3e−

i
2φ�σ·n̂ee−

i
2Gγθσ3 , (9)

and both spin tune and stable spin direction are

changed [1].

In general, both spin tune and stable spin direction are

function of particle’s phase space coordinate, i.e.

n̂co( �Jz, φz, θ) = n̂co( �Jz, φz + 2π, θ) (10)

where �Jz and , φz are particle’s 6-D phase space coordi-

nates. Spin tune is the number of spin precessions around

n̂co in one orbital revolution. Unless betatron tune is in-

teger, spin tune and stable spin direction can no longer be

computed by the simple one turn spin transfer matrix ap-

proach. Algorithms like SODOM, SLIM were developed

to compute the stable spin direction for particles off closed

orbit [3, 4]. For a single isolated resonance, an analytical

solution of n̂co was also found by Mane [5]. In the presence

of overlapping resonances, the stable spin direction can be

computed by numerical spin tracking using stroboscopic

averaging developed by Heinemann and Hoffstaetter [6].

CHALLENGES IN ACCELERATING
POLARIZED PROTONS TO HIGH

ENERGY
Depolarizing Resonances

In a high energy planar accelerator, accelerating polar-

ized protons operation is challenged by the presence of

non-vertical magnetic fields due to magnetic field errors,

quadrupole misalignments or vertical betatron oscillations,

which kick the spin vector away from vertical direction.

When the frequency of the perturbation on the spin motion

coincides with the spin precession frequency, the kicks on

the spin vector can be coherently added and result in polar-

ization loss, i.e. a depolarizing spin resonance [1].

Depending on the source of the spin perturbing mag-

netic fields, there are two types of spin depolarizating res-

onances. The imperfection spin resonances at Gγ = k are

due to dipole errors and quadrupole misalignments. Here k
is an integer. The strength of this resonance is proportional

to the size of the vertical closed orbit distortion. The intrin-

sic spin resonances at Gγ = kP ± Qy , on the other hand,

are driven by vertical betatron oscillation in the absence of

coupling as well as other high order effects. Here, P is

the super-periodicity of the machine and Qy is the verti-

cal betatron tune. The stronger the betatron oscillation, the

stronger the intrinsic spin resonance. In general, for a res-

onance at Qs = K, the resonance strength εK is defined

as

εK =
1

2π

∮
[(1 +Gγ)

Bx

Bρ
+ (1 +G)

Bs

Bρ
]eiKθds. (11)
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Figure 1: Strength of intrinsic spin resonances from injec-

tion energy to 250 GeV in RHIC. These are calculated from

a RHIC lattice without any spin manipulation devices. The

intrinsic spin resonance strength is calculated with a single

particle at an emittance of 10π mm-mrad.

Evidently, for an imperfection resonance, its resonance

strength is independent of particle’s betatron oscillation

amplitude. Intrinsic resonance strength, on the other

hand, is different for particles at different betratron am-

plitude since they experience different magnetic field in

a quadrupole. Fig. 1 shows the strength of intrinsic res-

onances as a function of energy in RHIC, calculated with

Depol [7]. A total of 423 imperfection resonances lies be-

tween the RHIC injection energy and its designed store

energy at 250 GeV, and the higher the beam energy, the

stronger the imperfection resonance. The strong intrinsic

spin resonances in RHIC are located at 81 ± (Qy − 12),
81 + (Qy − 6), 2 ∗ 81 + (Qy − 12), 3 ∗ 81 − (Qy − 12)
and 5 ∗ 81± (Qy − 12). Clearly, no beam polarization can

survive through all these depolarizing resonances.

The polarization change after crossing a resonance de-

pends on the resonance strength as well as how fast the

resonance is crossed. For a single isolated resonance, the

ratio of the polarization after crossing the resonance Pf to

the initial polarization Pi is given by the Froissart-Stora

formula [8]

Pf = Pi(2e
−π|εk|2

2α − 1) (12)

where α = dQs

dθ is the resonance crossing rate and εk is the

strength of the spin resonance. As indicated in Eq. 11, since

intrinsic spin resonance strength is a function of the beta-

tron oscillation amplitude, the average beam polarization

of a Gaussian beam crossing an intrinsic resonance then

becomes

Pf = Pi

1− π|εk|2
α

1 + π|ε|2
α

, (13)
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Figure 2: This plot shows the beam polarization as a func-

tion of the beam energy in the ZGS.

For a Gaussian beam, a polarization profile, i.e. po-

larization as function of betatron coordinates can be de-

veloped, of P (x, x′, y, y′) = P0e
x2+x′2
2σ2

xp e
y2+y′2
2σ2

yp can be

developed, The average beam polarization is 〈P 〉 =
P0

1
(1+Rx)(1+Ry)

[9]. Here P0 is the beam polarization of

particle in the beam center, σx,p and σy,p are the rms size

of horizontal and vertical polarization profile, respectively.

Rx,y = σ2
x,y/σ

2
x(y),p where σx,y is the rms beam size.

Overcome Imperfection Spin Resonance and In-
trinsic Spin Resonance

Both imperfection resonances and intrinsic resonances

can be overcome by correcting the closed orbit distortion

at Gγ = K and fast jumping betatron tune at Gγ = kP ±
Qy [1], respectively. Both techniques were first developed

at the Argonne ZGS (Zero Gradient Synchrotron) [10, 11]

in the early 70s. Fig. 2 shows the tune jump at each intrin-

sic resonance during acceleration. Both techniques were

also applied to the AGS at BNL. With six fast tune jump

quadrupoles and harmonic orbit corrections, polarized pro-

tons were accelerated to 22 GeV with 40% polarization in

the AGS [12]. However, to achieve this, months of dedi-

cated beam time were required [13].

For strong intrinsic spin resonances, one can use an RF

dipole to excite a large amplitude coherent betatron oscilla-

tion to effectively enhances the intrinsic resonance strength

and achieve full spin flip with regular resonance cross-

ing rate. The advantage of this technique is to preserve

the beam emittance by energizing the RF dipole adiabati-

cally [14]. This technique was first successfully developed

at the AGS [15] to obtain full spin flip at the four strong

intrinsic resonances Gγ = 0 + Qy , Gγ = 12 + Qy and

Gγ = 36 ± Qy . However, this technique is not applica-

ble to weak intrinsic resonances due to the limit of physical

aperture.

Partial Snake
For medium energy accelerators, the tedious and lengthy

setup time of orbital harmonic correction for each imper-

fection resonance can be a serious impediment. Hence, an

novel technique of using a partial snake, a magnetic which

rotates spin vector around an axis in the horizontal plane by

an angle of ψ < 180o, to keep the spin tune away from all

integers was proposed [16]. Equation 14 shows that spin

tune, as a function of beam energy, becomes discontinu-

ous at each integer. Hence, all imperfection resonances are

avoided.

cos(πQs) = cos(Gγπ)cos(
ψ

2
). (14)

This technique was first developed at the BNL AGS [17]. A

5% solenoid snake, i.e. it rotates spin vector by 5% of 180o,

was installed in the AGS in the mid 1990s to overcome all

the imperfection resonances [18].

In order to avoid the depolarization due to the weak res-

onances in the AGS, a dual partial snake scheme was de-

veloped in 2006. A 5.9% room temperature helical snake

plus a super-conducting helical snake which can provide

an maximum strength of 20% at the AGS extraction energy

were installed located 1
3 of the ring apart. With this config-

uration, spin tune then becomes [19]

cosπQs = cosGγπcos
ψc

2
cos

ψw

2
− cosGγ

π

3
sin

ψ1

2
sin

ψ2

2
.

(15)

Here, ψc and ψw are the amount of spin rotations of the

strong super-conducting snake and the 5.9% snake, respec-

tively. Equation 15 implies that not only the spin tune is

forbidden in a gap around each integer but also that the

width of the gap is modulated at an integer multiple of 3.

The gap reaches its maximum width at each integer mul-

tiple of 3 where the two snakes are coherently added and

otherwise reaches its minimum width when the two snakes

are subtracted. Since the AGS has a super-periodicity of 12,

all the strong intrinsic resonances are located at the integer

multiple of 3 where the spin tune forbidden gap reaches

its maximum. Hence, by placing the vertical betatron tune

inside the spin tune forbidden gap, all imperfection and in-

trinsic spin resonances are avoided during the AGS accel-

eration [20].

Full Siberian Snake
To reach even higher energy polarized protons, it is op-

erationally impossible to individually overcome each de-

polarizing resonance due to the amount of spin depolar-

izing resonances during the acceleration. Much stronger

resonances also make it very difficult to preserve polariza-

tion with just partial snakes. Thanks to the invention of the

Siberian snake by Derbenev and Kondratenko in 1976 [21],

the polarized proton acceleration to high energies became

practical. The Siberian snake is a special device which ro-

tates the spin vector by 180◦ around an axis in the hori-

zontal plane. Equation 9 shows in a ring with a single full

snake, the spin tune becomes half integer, independent of
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beam energy and both imperfection resonances and intrin-

sic resonances are avoided [21]. This technique was first

experimentally demonstrated in the cooler ring of Indiana

University Cyclotron Facility in the 1980s[13].

For high energy accelerates like RHIC, intrinsic res-

onance can be so strong that more than one snakes are

needed. In a ring with two full Siberian snakes located

at 180o apart from each other are used, the one turn spin

transfer matrix is

M(θ+2π, θ)=e−
i
2Gγ(π−θ)σ3(in̂1·�σ)e− i

2πσ3(in̂2·�σ)e− i
2 θσ3

(16)

where n̂1, 2 are the axes of the two snakes, both are in the

horizontal plane with an angle of Δφ. It can easily show

that the spin tune is Qs =
1
πΔφ, where Δφ is the angle be-

tween the axes of the two snakes. With the axes of the two

snakes perpendicular to each other, the spin precession tune

is 1
2 . It is also easy to show that the stable spin direction

stays vertical all around the ring. RHIC employs two full

Siberian snakes in each of its two accelerators to preserve

polarization through acceleration as well as collision at a

store energy, and each RHIC snake consists of four helical

dipoles [22].

The spin tune and stable spin direction mentioned above

for one snake as well as dual snake setup are for a parti-

cle at zero betatron oscillation amplitude in a perfect ring.

In reality, both spin tune and stable spin direction can be-

come strongly dependent on the particle’s phase space co-

ordinates in the presence of strong spin depolarizing reso-

nances, and can no longer be calculated through the simple

one turn matrix approach as illustrated in Eq. 16. For a sin-

gle isolated spin resonance case, an analytic solution was

found by Mane [5]. Based on Mane’s model, stable spin

direction exhibits singularity at location ofmQy = Qs+k,

and leads to significant depolarization. Here, m, k are in-

tegers, Qy is the vertical betatron tune and Qs is the spin

precession tune. This is the so-called snake resonance, and

was first observed during numerical simulation by Lee and

Tepikian [23]. They are also experimentally observed at

IUCF [24] as well as RHIC [25]. m is also called the order

of the snake resonance. In an accelerator with only a single

snake, an intrinsic spin resonance can drive both even or-

der snake resonances (m is an even number) as well as odd

order snake resonance (m is an odd number), and available

betatron tune space for polarized beam operation can be

rather limited.

With dual snake setup like RHIC, on the other hand, all

the odd order snake resonances are eliminated and only the

even order snake resonances exist in the absence of closed

orbit distortion. This greatly opens up the available tune

space for accelerating polarized beams. However, snake

imperfections and imperfection resonances can bring back

even order snake resonances, and result in significantly re-

duction of betatron tune space for preserving polarization.

In addition, the imperfection of snake can deviate spin tune

away from half integer, and causes each snake resonance to

split [1]. Hence, optimizing snake configuration as well as

minimizing closed orbit distortion are critical in avoiding

snake resonances.

Careful choice and precise control of betatron tune to

stay away from any snake resonances are critical to pre-

serve polarization. For Qs = 1
2 , one can see that snake

resonance is forbidden at locations of Qy = n
2m+1 . For

RHIC, Qy = 29.673, at the vicinity of 3rd order reso-

nance, was chosen for accelerating polarized protons be-

yond 100 GeV, where three strong very strong intrinsic res-

onances are present.

In reality, the presence of snake imperfections and im-

perfections resonances brings back even order snake reso-

nances. The imperfection of snake can deviate spin tune

away from half integer, and causes each snake resonance to

split [1]. Both can significantly shrink the available space

for the betatron tune during the acceleration. Hence, op-

timizing snake configuration as well as minimizing closed

orbit distortion are critical in minimizing polarization loss.

In addition, it is also very critical to keep the spin tune as

close to half integer as possible. In RHIC, spin tune shift

can come from the error in the angle between the axes of

the two snakes, and the horizontal orbital angle at the two

snakes [26].

In the presence of very strong intrinsic resonance, i.e.

εk > 0.5, the snake resonances can be overwhelming and

the tolerance on closed orbit and beam parameters can be

at a level of impractical for operation. In this case, more

snakes option should be explored. To accelerate He-3 in

RHIC, because of the large anomalous g-factor, the intrin-

sic resonance for He-3 is about a factor of 2 stronger than

the resonances for protons. Fig. 3 shows the snake res-

onance spectrum with current RHIC dual snake configu-

ration. However, this can be greatly mitigated by adding

two more pairs of snakes as shown in the bottom plot of

Fig. 3. The 6-snake setup not only opens up available be-

tatron tune spaces for acceleration, but also greatly relaxes

the tolerance on other beam parameters [27]. As deriva-

tived from the first order spin resonances like intrinsic res-

onance, the strength of snake resonance is tightly asso-

ciated with strength of its driving resonance. Generally,

the stronger the intrinsic resonance, the more harmful the

snake resonance is. However, it is also worthwhile to point

out the polarization crossing a snake resonance does not

obey the Froissart-Stora formula. Currently, this is only

studied through numerical spin tracking.

Polarization Lifetime
In high energy colliders like RHIC, at the store en-

ergy carefully chosen to be distant from major depolariz-

ing resonances, both beams undergo beam-beam interac-

tion, which leads to betatron tune shift as well as incoherent

tune spread for each beam. For RHIC, the beam beam tune

spread can be as large as 0.0075 per collision for polarized

proton physics operation. This can populate particles in the

beam sitting on a snake resonance, and polarization deteri-

oration can happen during long hours of store as observed

at RHIC [28].
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Figure 3: Top plot shows the snake resonance spectrum

with RHIC dual snake setup, while bottom plot corre-

sponds to 6-snake setup. Both plots show the vertical com-

ponent of the spin vector as function of vertical betatron

tune.

In addition to its impact on betatron motion, the beam-

beam force also provides kick to spin motion. This effect

was investigated by Batygin and others [29]. For a Gaus-

sian distributed round relativistic beam, the electric field

and magnetic field are �E = qn
2πε0r

[1 − (exp(− r2

2σ2
)]r̂ and

�B = 1
c
�β × �Eφ̂, where qn is the charge line density of

the beam, σ is the transverse beam rms size, r̂ and ˆphi
are the unit vector along the radial and azimuthal direc-

tion of beam. The corresponding beam beam tune shift is

ξ = Nr0β∗
4πγσ2 , where r0 is the classic radius of the particle.

Apply this to the Thomas-BMT equation, one can then es-

timate the maximum spin kick 2πεbb from the beam-beam

interaction as

εbb = 2Gγξσ
r

σ

(1− exp(− r2

2σ2
))

r2

2σ2

. (17)

Fig. 4 shows the calculated maximum beam-beam spin kick

as a function of distance from the center of beam for a beam

of 15πmm-mrad emittance (95%, normalized) at RHIC

store energy of Gγ = 487. 0.7 m β-function at collision

point and beam-beam tune shift ξ = 0.01 are assumed. In

general, this is comparable to very weak lattice driven spin

resonances. Thus, the beam-beam driven snake resonances

are very weak for accelerators like RHIC that are equipped
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Figure 4: Maximum spin kick from beam-beam for a Gaus-

sian round beam at RHIC store energy of Gγ = 487.

The β∗ is 0.7m, and normalized 95% beam emittance is

15πmm-mrad for the calculation. The beam-beam param-

eter is chosen as 0.01 for this calculation.

with full snakes, and should be fully benign to beam polar-

ization at store as long as the betatron tune stays away from

the snake resonances. So far, detailed studies and analysis

of the RHIC beam-beam impact on the polarization life-

time indicate that beam polarization deterioration at store

is still due to the snake resonance at 5Qy = Qs + 3 [28].

However, for accelerators with no snakes, beam-beam kick

can drive additional spin resonances and result in polariza-

tion losses as observed at electro-positron collider LEP [30]

and HERA, a polarized electron and proton collider [31].

Hence, it is critical for the choice of the working point, i.e.

the tunes without collision to ensure long polarization life-

time.

CONCLUSION
Accelerating polarized protons to high energy is chal-

lenged by various depolarizing mechanisms driven by mag-

netic fields from manufacturing errors, misalignments, be-

tatron oscillation and etc. Motivated by the need of having

high energy polarized protons to study proton spin structure

as well as other spin dependent physics, continuous efforts

over the past couple of decades have been made in seeking

ways to overcome spin depolarizing resonances and pre-

serve polarization to high energy. Table 1 lists the achieved

polarized proton performance at various facilities. The op-

erating period for each facility is also listed. In Table 1,

RHIC polarization is measured with an absolute polarime-

ter using H-jet [32]. It reflects the polarization averaged

over a store, typically, 8 hours.

Physics of polarized protons in accelerators is a very rich

topic, and this tutorial presentation can only cover the very

basics of spin dynamics in a circular accelerator. The non-

linear aspects of spin dynamics, the effect of synchrotron

radiation on polarization as well as challenges in robust nu-

merical spin tracking are not covered in this presentation

due to the complexity of each topic and limited space. In
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Table 1: Performance of Polarized Protons Facilities

facility operating beam max beam

period energy polari- intensity

[GeV] -ration 1011

ZGS 1969-1979 12 71% 0.9

AGS 1979-present 23 70% 2

IUCF 1982-1995 0.2 N/A N/A

COSY 1985-present 3 N/A N/A

RHIC 2000-present 255 57% 1.8

addition, this presentation also couldn’t cover the topics of

spin manipulation driven either by the physics program or

by the needs of diagnostics like non-destructive spin tune

measurement. The author can only hope this presentation

serves as a brief introduction to attract those talented col-

leagues in the community to join the journey of this rich

and interesting physics of polarized beams in accelerators.
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