THE ILLINOIS ACCELERATOR RESEARCH CENTER

R. Kephart[#], J. Anderson, C. Cooper, S. Henderson, C. Schmidt Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Abstract

Particle accelerators are an enabling technology not only utilized in their traditional role for fundamental research, but also in such diverse fields as medicine, industrial processes, environmental mitigation, and national security. In recognition of this large impact on the US economy, the Fermi National Accelerator Laboratory (FNAL) has partnered with the Illinois Department of Commerce and Economic Opportunity (DCEO) and the Department of Energy's Office of High Energy Physics (DOE/OHEP) to build the Illinois Accelerator Research Center (IARC). Located on the Fermilab campus, this 83,000 square foot facility will house office, technical, and educational space in a stateof-the-art facility for accelerator research, development, and education. With a strong focus on industrial application of accelerator technologies, IARC will attract high-tech companies to Illinois and help train Illinois citizens in advanced technologies.

INTRODUCTION

IARC was conceived and proposed by Fermilab and DOE to the State of Illinois in 2007. The need for a US facility like IARC was recognized at the Accelerators for America's Future symposium held in Washington DC in Oct 2009. The 2010 report from this symposium contains a wealth of information on the basic justification for investment in accelerator applications as well as the opportunities for new accelerator applications for a facility like IARC [1]. Following the lead of this symposium, the 2012 Senate Water and Energy Bill encouraged DOE to pursue the development of accelerator applications more aggressively [2,3]. It requested DOE/OHEP to provide a plan to address the opportunities made evident in the Accelerators for America's Future symposium. In 2011, OHEP convened an Accelerator R&D Task Force to offer advice on the creation of such a plan. An interim report from this committee was presented at the High Energy Physics Advisory Panel (HEPAP) meeting in March 2012 [4]. The final report to the House and Senate Appropriations Subcommittees was completed in September 2012. Through this request by Congress, OHEP is now the designated steward of accelerator science and technology within the DOE Office of Science complex, with a new thrust toward applied technology.

Key to the success of IARC will be a shared understanding at the national, state, and local levels that translational technology, namely developing ideas from the laboratory into commercial practice, only happens when the proper environment is cultivated. The proper environment promotes friendly, flexible collaboration with industry and universities and provides sufficient seed

resources such that non-traditional and multi-disciplinary efforts can flourish.

In 2014 Fermilab plans to increase its partnerships with industry via Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA's). When the physical plant is completed for occupancy in 2015, the IARC facility will attract industrial partners to technology for accelerator develop applications, encourage development of intellectual property by laboratory and university accelerator staff, and provide a National Center for Accelerator Education. The goal is a successful IARC program that exploits and leverages resources from DOE OHEP, Small Business Innovation Research (SBIR) programs, DCEO, and other public funding with substantial private investment from industry and the venture capital community. These funds will be used to translate ideas in accelerator technology into new high tech products and industries and to create an educational program to train the skilled workforce to build and operate the accelerators of the future.

A key concept for the IARC program is that it serves as a portal to allow industrial access, not just to the IARC physical plant, but also to the facilities and technical expertise of the entire laboratory. A successful program at IARC will lower barriers for Laboratory — Industry cooperation on accelerator technology and applications and enable an entire new class of projects to be undertaken as Government-Industry partnerships.

MISSION STATEMENT

The mission of IARC is to partner with Industry, University, and Laboratory collaborators to promote the development of accelerator technology and applications, leading to new products, capabilities, and businesses. The IARC education program will support and enable the creation of the high technology workforce required for its mission.

THE VISION

The vision for IARC is the creation of a friendly, flexible environment to facilitate collaboration with industry, universities, and other national labs and to help provide sufficient seed resources such that non-traditional and multi-disciplinary efforts can flourish. The IARC environment will allow access and leverage of Fermilab's unique facilities and staff to create an innovation hub for new Accelerator based technologies and industries.

When the IARC physical plant is complete in 2015, the laboratory envisions attracting industrial partners to develop technology for industrial accelerator applications; encouraging the development of advanced innovative accelerator science and technology as well as intellectual

property by laboratory and university staff; and creating a National Center for Accelerator Education.

The key components of the IARC mission and vision are:

- Partnerships with industry, university, and laboratory collaborators to promote the development of accelerator technology, projects, and applications.
- Creation and support of entirely new U.S. based high tech industry sectors based on accelerator technology that enables new products and capabilities.
- Partnerships with universities to create a national educational center for accelerator science and technology.

IARC'S VALUE TO INDUSTRY

IARC will offer value to U.S. industrial companies and entrepreneurs by:

- Helping to overcome the technical barriers that currently impede development of ideas into new accelerator based applications and businesses.
- Serving as a portal organization to provide industry with better access to the extensive expertise in accelerator science and technology available from the Fermilab staff as well as the staff at nearby Argonne National Laboratory.
- Providing access to the specialized and unique accelerator infrastructure at Fermilab.
- Enabling and encouraging collaborations to propose and demonstrate the use of accelerator technology for new applications or markets.
- Serving as a Center for Accelerator Education allowing industrial staff to acquire needed technical skills to pursue businesses based on accelerator technology

CAPABILITIES AVAILABLE TO INDUSTRY THROUGH IARC

IARC will provide unique infrastructure for the development of new accelerator based products and businesses. However, key to its success is the powerful core capabilities available at the entire laboratory. The Accelerator Sector at Fermilab is made up of nearly 700 Scientists, Engineers, and Technical staff. Staff members have extensive experience spanning decades of design, construction, and operation of some of the most challenging technically accelerator components, accelerator systems, and facilities in the world. A brief summary of some specific areas of expertise and excellence that currently exist at the laboratory are listed in Table 1.

Table 1: Fermilab Core Capabilities Available to IARC Partners

Core capabilities	Areas of Expertise	
Accelerator	Beam dynamics and theory	
Science	Simulation and Modeling	
Science	Phase-space manipulation	
	Energy Deposition	
Accelerator	Operation and commissioning of large	
	Operation and commissioning of large,	
Operation	complex accelerator systems	
Accelerator	Linear and circular particle accelerators	
Technology	Superconducting RF cavities	
(1.	Superconducting magnets	
(design,	Cryomodules	
fabrication, test)	Conventional, and pulsed magnets	
	Magnet field mapping	
	Beam Cooling systems	
	Design of high power targets	
	High and low-level RF systems	
	Cryogenic Refrigeration systems	
Accelerator	Accelerator design & fabrication	
Engineering	Accelerator integration & commissioning	
	Accelerator system cost estimates	
	Design of accelerator RF systems	
	Radio Frequency system modeling	
	Low and High power electrical systems	
	Water cooling systems	
	Energy deposition and activation	
	Cryogenic Engineering	
Particle Detectors	Advanced Detector development	
	Beam test of detectors	
	Custom ASIC development	
Controls	Control systems modeling and design	
Engineering	Control & Interlock systems	
	Data acquisition systems	
	VHDL, PLD, PLC, DSP programming	
Computing	Management, analysis of large data sets	
	High speed parallel (GRID) computing	
	High speed networks	
	Data Storage and Cloud computing	

The Fermilab accelerator sector staff and that of nearby Argonne National Laboratory represent the largest collection of Accelerator capability in North America. Similarly, the challenging experimental particle physics program at Fermilab has created world class capabilities in particle detector development and in advanced computing.

FACILITIES AVAILABLE TO INDUSTRY THROUGH IARC

IARC, located in the heart of the Industrial and Technical area of the Fermilab campus, will consist of 36,000 square feet of heavy assembly, technical, and office space in an existing Heavy Assembly Building (HAB) plus 47,000 square feet of new technical, office, and educational space in the State of Illinois funded addition. These two buildings make up the IARC complex.

The OTE building will provide office space for scientists, engineers, and administrative staff from Fermilab and IARC industrial, university, and laboratory partners. The OTE building provides meeting rooms, a

09 Industrial Accelerators and Applications

lecture hall, and technical lab space. The layout of OTE and the nearby Heavy Assembly Building (HAB) is shown in Figure 1, which also indicates IARC's location in relation to the buildings that make up the Fermilab "Industrial Complex".

Figure 1: The IARC OTE & HAB Buildings shown in the Technical Division Complex.

The Industrial Complex houses the bulk of the Fermilab Technical Division (TD). TD staff located in the Industrial Complex includes experts in conventional and superconducting magnets, experts in warm and superconducting RF technology, and a powerful superconducting materials technology group. It is planned to move the Accelerator Physics Center (APC) to the OTE building with the goal of integrating FNAL staff with industrial and university partners encouraging exchange of information and true partnerships. APC has a long history of working with industrial partners on diverse topics. Members of the APC staff have strong Accelerator Physics, Beam simulation, and energy deposition capabilities.

The industrial complex includes extensive technical infrastructure for the development of accelerator components. Additional technical infrastructure at other locations on the Fermilab campus will also be available to IARC partners. Several test accelerators and beams will also be made available to IARC partners.

The IARC OTE Building can be seen in Figure 2. The IARC HAB, seen in Figure 3, was formerly used as the assembly building for the Collider Detector at Fermilab (CDF). CDF was a large 5000 ton experimental detector used at the Fermilab Tevatron collider. This building has a large assembly area equipped with 50 ton and 10 ton overhead crane coverage, and also has a deep pit that is ideal for testing or operating pilot scale accelerators or

any similar equipment that will require radiation shielding. Extensive test and operation infrastructure already exists in this facility, including cryogenic refrigeration, low conductivity cooling water, and 1.5 MW of installed electrical power feeds. The HAB also has additional office space, meeting areas, and a technical shop with equipment for general machining.

Figure 2: Illinois Accelerator Research Center (Office Technical and Education addition) under construction at Fermilab.

Figure 3: Photo of the interior of the IARC Heavy Assembly Building.

A successful program at IARC will lower barriers for Laboratory — Industry cooperation on accelerator technology and applications and enable an entire new class of projects to be undertaken as Government-Industry partnerships. In this spirit we have compiled a list of the extensive technical infrastructure and test capabilities available at Fermilab via the IARC program. Table 2 lists fabrication and test capabilities at Fermilab, while Table 3 lists Fermilab test accelerator and beam test facilities.

Table 2: Fabrications and Test Capabilities at Fermilab

Facility	Capability	Specifications
	Superconducting	3 vertical test Dewars
	RF cavity test	3.6 m in depth
	facility.	0.86 m in diameter
		1.4 K min temperature
Technical	Conventional	3 horizontal test stands
Division	magnet test and	Pulsed power supply 750V,
IB1	mapping facility	25 kA, 2 HZ Complete
IDI		magnet mapping capability
	Superconducting	Vertical Dewar
	Magnet Test and	3.85 m deep
	Mapping	0.6 m diameter
	facility.	1.8 K capability; Horizontal

2013 CC-BY-3.0 and by the respective aut

2
Ξ
1
₫
±
2
SINA
PC
1.6
he
=
7
_
ĭ
22
9
\geq
4
7
cr
3
~
0
+
Ξ.
, u
7

	Facility	Capability	Specifications
			SC magnet test stands 2 or
			4 K SC magnet Power supply
			(30 KA, 30 V); Interlocks
			and DAQ
		Cryogenic	Helium refrigerator: 1,500
		System	watts at 4.5K or 300 l/hour
ŀ			liquefaction 25 ft long curing and de-
		G 4: 1	bonding ovens
	Technical	Conventional magnet	7 ft dia, 250 F, vacuum
	Division	fabrications and	furnace; Lamination
	IB2	repair.	stacking and winding of large conventional magnet
			coils
			SC cable machine;
			SC cable winding line 7
			meter curing presses Nb3Sn
			reaction ovens
		Superconducting	Analytical equipment:
	Technical Division	magnet	Scanning electron
	IB3	development	microscope with Energy
	123	and fabrication	Dispersive Spectroscopy,
			Laser confocal and contact
			surface profilometry, FT- IR/TGA, Stress/Strain
			equipment, Residual
			resistivity ratio testing
		Quality Control	Large CMM machines
		Carrita	State of the art cavity
	Technical	Cavity Processing Lab	tumbling machine Electro-
	Division	11000ssmg Euo	polish tool for SRF cavities;
	IB4		Class 10 clean room High purity, high pressure water
			rinse, Small and large 1000
			C vacuum furnaces
	T 1 : 1		Large high bay area with
	Technical Division	High Bay	two 30 Ton overhead cranes and extensive
	ICB	Assembly Area	Cryomodule assembly
			infrastructure
		Large Clean	Large class 10- class 100
OI D		Rooms	clean room;
ILLIIV		Clean SRF	Fixtures for the clean string
11	Technical	assembly	assembly of SRF
7 1 7	Division MP9		cryomodules, Titanium
	MP9		welding infrastructure
the respective authors			Large 1000 C high vacuum
		Large Vacuum Oven	oven.
		Oven	Test of dressed SRF
I - Dev alla Dy			cavities at 2 K with pulsed
CULL			or CW RF.
0.0	Technical	Dressed Cavity	3 stands in 4 Shielded reconfigurable enclosures
	Division	Test Facility	1800 W @ 4K of cryogenic
	MDB		refrigerators
5			Large vacuum pump
OT D			provides 100 W at 2 K.
>			

Facility	Capability	Specifications
ANL- Fermilab Cavity Processing Facility	Surface processing and clean assembly of SRF cavities	Class 10 clean room for assembly; 2 EP/BCP tools for chemical surface processing of SRF cavities; 2 high pressure rinse systems; Ultra-clean water system; Trained Fermilab and ANL staff Facility located at Argonne Nat Lab.
Accelerator Division CMTF	CryoModule Test Facility	Test of SRF cryomodules at cryogenic operating temperatures and with RF Power. The facility is equipped with two large cryogenic refrigerators and can easily be adapted for other cryogenic testing activities.
Technical Division	Testing of large	Proximate to the Tevatron Central Helium Liquefier.
Solenoid	cryogenic	
Test	magnets	This facility and its large
1 650	powered and at	test Dewar is capable of
Facility IB1 & CHL	operating	testing very large magnets
IDI & CIL	temperature	at 4 Keiviii.

Table 3: Fermilab Test Accelerator and Beam Test Facilities

Facility	Description	
racility	Currently this facility consists of a 40 MeV	
NML Pulsed SRF Facility	photo-injector and a facility to allow cold test of	
	single 1300 Mhz cryomodule. Proposed as the	
	basis of a world class Advanced Accelerator	
	R&D (AARD) program. (see ASTA below) ASTA is envisioned to contain 3 to 6 ILC/PX	
	1300 MHz cryomodules each containing eight	
	,	
Advanced	cavities. Beam lines and test areas will support a user facility for a world class advanced	
	3	
Super-	accelerator research program. ASTA will provide intense electron beams from 50 to 800	
conducting Test	MeV/c energies. A small storage ring IOTA	
Accelerator	8	
	with the capability of storing either electrons or	
(ASTA)	protons is also planned to explore new	
	techniques to store intense beams. See:	
	http://apc.fnal.gov/programs2/ASTA_TEMP/in dex.shtml	
Fermilah	A high energy beam facility devoted to Detector	
Test Beam	R&D. The facility consists of two versatile	
Facility	beamlines (MTest and MCenter) in which users	
(FTBF)	can test equipment or detectors. Details can be	
At MDB	found at http://www-ppd.fnal.gov/FTBF/.	
At MDB	Used for R&D on ionization cooling	
	components for the Muon Accelerator Program	
	(MAP). The facility includes an experimental	
	hall with radiation shielding, a 600 W cryogenic	
MuCool Test	plant, access to 400-MeV high-intensity H-	
	beam from the Fermilab Linac, 201 & 805 MHz	
Area (MTA)	RF power, a large-bore solenoid magnet, liquid	
, , ,	helium and nitrogen, vacuum and hydrogen	
	safety systems, Details can be found at	
	surery systems, Details can be round at	
	http://mice.iit.edu/mta/.	

Facility	Description
Project X Injector Experiment (PXIE)	PXIE is the integrated systems test for the Project X frontend. It is expected to accelerate a 1-mA CW beam up to 30 MeV with 1 mA average current. See: http://www-bdnew.fnal.gov/pxie/

SCHEDULE AND TIME LINE

The near term plans for IARC focus on construction of the IARC facilities and development of the business plan. This will be followed by launching the Accelerator Applications Program and then the Education Program.

The shell of the State funded OTE Building is finished and the building is scheduled to be complete in December of 2013. Building layouts that will optimize the different functions of IARC are being finalized so that outfitting of the OTE can begin in January of 2014. This will allow for beneficial occupancy of the OTE building in September of 2014.

Preparation of the HAB has 3 concurrent projects currently: Removal of old experimental equipment from the building, Life Safety Upgrades, and refurbishment. The main schedule driving element is decommissioning of the Tevatron CDF detector including heavy steel work and removal of over 2500 T of experimental equipment from the deep pit of HAB. Assuming adequate funding in FY14, it is envisioned that HAB Deconstruct and Decommission (D&D) will complete by the end of 2014. The HAB Life Safety Upgrades are scheduled to be complete in October of 2014.

Completion of OTE, HAB D&D, and HAB life safety projects will allow Industrial Partners to begin to utilize portions of the IARC facility in early 2015. The HAB Refurbishment project will modernize the 2nd and 3rd floors of HAB as the space is reconfigured into office. meeting, and technical spaces. A new HVAC system and controls, new insulated exterior, new windows and other modifications will allow the building to meet required energy and ADA standards.

In parallel with the construction of the IARC physical plant, the business plan and IARC program will be further developed by the IARC Staff, Fermilab Directorate, Fermilab DOE Site Office, and DOE Office of High Energy Physics leading to the launch of the formal IARC Accelerator Applications and Education programs.

THE PARTNERSHIP MANAGEMENT **CHALLENGE**

IARC is expected to drive significant changes in the way Fermilab interacts with industry. This Partnership Management Challenge has three major components:

- Forming new relationships
- Negotiating agreements
- Protecting Intellectual Property

Historically, Fermilab's communication program has focused on announcing scientific discoveries and promoting the Laboratory's technology transfer success stories to DOE, elected officials, industry, and the general

09 Industrial Accelerators and Applications

public. As IARC develops, Fermilab will need a more comprehensive program to advertise opportunities; coordinate events to attract new industrial partners; enlist the support and participation of industry groups and/or venture capital firms; and many other activities that require advanced marketing and sales techniques.

On a daily basis, IARC team members may be collaborating with other Fermilab scientists and engineers; industry or university partners; Department of Energy program managers or contracting officers; other research facilities, both U.S. and foreign; elected officials; or even the public. Each of these stakeholder groups has a different culture, a different language, and different expectations for partnering with the Lab. One of the top priorities for IARC and the Office of Partnerships and Technology Transfer (OPTT) is to establish simple and efficient processes for initiating, developing, negotiating, and administering a variety of partnership agreements that will meet the needs of these different stakeholder groups.

Ultimately, a key outcome of the IARC Program is to promote the commercialization of new technologies in support of U.S. competitiveness. In order to promote commercialization, these new technologies must be protected, which represents a major culture shift for Fermilab researchers. Intellectual property management is a very specialized field of knowledge covering the protection and licensing of intellectual property, such as copyrights, trademarks, patents, mask works, industrial design rights, tangible research products, and trade secrets. IARC Program management and OPTT are working together to develop an intellectual property management program that will provide the tools and training to help IARC team members work effectively in this new culture.

ACKNOWLEDGMENT

The authors would like to acknowledge Pier Oddone, for his personal support, Bob Hamm for his contributions to the business plan, Mike Weis, and Mark Bollinger, general DOE Fermi Site Office for their strong support, and the Department of Energy, Office of High Energy Physics, and the Illinois Department of Commerce and Economic Opportunity without whose financial support the IARC would not exist.

REFERENCES

- [1] Accelerators for America's Future, http://science.energy.gov/~/media/hep/pdf/acceleratorrd-stewardship/Report.pdf
- [2] House Report 2354, http://thomas.loc.gov/cgi-bin/query/z?c112:H.R.2354:
- [3] Senate Report 112-75 http://thomas.loc.gov/home/approp/app12.html
- Task Force Report, http://www.acceleratorsamerica.org/report/accelerator task force report.pdf

[4] Office of High Energy Physics Accelerator R&D

ISBN 978-3-95450-138-0