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Abstract
The usual practice of constructing quadrupoles from

truncated cylindrical hyperbolae is put into question. A
new shape is proposed. This shape has an analytic potential
function. The exact shape of the analytic quadrupole may
be impractical, but in the short case where aspect ratio≈ 1,
pole shapes can be spherical. The optimal spherical radius
is found to be 1.54 times the aperture radius. An example
is also given demonstrating that in the long quad limit, the
aberrations of order 5 and higher are much lower for the
optimized shape.

A somewhat extended version of this paper has been
published previously [1].

INTRODUCTION
The multipole elements commonly used to control

charged particle beams correspond to solution terms of the
Laplace equation ∇2V = 0, namely, in polar coordinates
(r, θ), rn cosnθ in the system where the potential on axis
is zero. Thus n = 2 for a quadrupole, 3 for a sextupole,
etc. This implicitly assumes the elements are infinitely
extended in the axial (z) direction, and of course in real
beamlines, they are not. For n = 2, the intended linear
dependence of the fields upon transverse coordinate is thus
broken by the finiteness of the quadrupole. This results in
nonlinear force terms and aberrations.

It is not obvious how to axially terminate the poles of
a quadrupole. Often, they are simply truncated. Does
the shape in the longitudinal direction matter? And if so,
what shape is optimal? For very long quadrupoles, it can
be argued that hyperbolic equipotential surfaces given by
r2 cos 2θ = constant are optimal. However, this is only
true sufficiently far from the ends; for quadrupoles whose
length is comparable to or shorter than the aperture, the 2-
D hyperbolic shape is clearly not optimal. What then is the
optimal shape of quadrupoles in the short limit? What is
the optimal shape in the long limit? Answering these ques-
tions is the subject of this paper.

Hardness of the Fringe Field
In the limit where the fringe field extent is short com-

pared with the focal length of the quadrupole, the lowest or-
der aberration (cubic force) effect is independent of fringe
field shape. This was shown in 1997 [2].

Let the strength function of the quadrupole be k(z).
Rigourously, this means ∂xxV = −∂yyV = k(z) along
the axis x = y = 0, so that

V (x, y, z)→ k(z)

2
(x2 − y2) as (x, y)→ (0, 0), (1)

∗TRIUMF receives federal funding via a contribution agreement
through the National Research Council of Canada.

In the “hard-edge” limit, k is a step function. But using
a discontinuous step function instead of an analytic func-
tion to calculate the optics leads to dramatically incorrect
results. It is thus regrettable that almost all the major higher
order optics codes allow calculation of third order optics in
the “no fringe field” case. This case is unphysical because
it brings a particle from the field-free region outside the
quadrupole instantaneously into the region where k 6= 0
without traversing intermediate fields. For example, for
electrostatic quadrupoles, this violates conservation of en-
ergy as the potential energy is thereby incremented without
changing the kinetic energy (in magnetic quadrupoles, an-
gular momentum conservation is violated).

The beamline designer may have learned that the third
order aberrations calculated without fringe fields are in-
correct, but he/she is still left with the impression that the
fringe field is at fault and customizing it in some way will
improve the third order optics. Further, of quadrupoles
with the same effective length, those with short fringe
fields are erroneously thought to be superior even though
this often means they have smaller aperture. In fact, such
quadrupoles are inferior, as their fifth order aberrations are
worse: it can be shown that in the hard-edge limit, fifth
order aberrations are singular [3].

ANALYTIC QUAD
A technique for finding the potential in all space given

only the strength function k(z) is given by Derevjankin [4,
this reference is in Russian, but referred to by Vasil’ev [5]]:

V (x, y, z) = −<
{∫ z+ix

z+iy

dt

∫ t

0

k(ζ)dζ

}
(2)

A particularly simple case that is realistic for short quads is

k(z) =
K

2
sech2z. (3)

We find:

V =
K

2
<{− log[cos(x− iz)] + log[cos(y − iz)]}

See Fig. 1 where equipotential contours are plotted using
as scaling potential V0 ≡ V (π4 , 0, 0) = K

4 log 2. The
transverse fields are locally nonlinear; at z = 0, Fx ∝
tanx, Fy ∝ tan y. Nevertheless, the integral of the trans-
verse field is exactly linear:∫ ∞

−∞
Fxdz = Kx, (5)

and similarly,
∫
Fydz = −Ky. The reason for this be-

haviour is that farther from axis, the transverse field is

. (4)
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Figure 1: Equipotentials of Eq. 4. Upper: in z = 0 plane,
contours V = 4V0 (blue),V = V0 (purple),V = V0

4

(beige),V = V0

16 (green), V = −V0

16 (blue), V = −V0

4
(purple), V = −V0 (beige), V = −4V0 (green). Lower: in
y = 0 plane, contours V = 4V0 (blue), V = V0 (purple),
V = V0

4 (beige), V = V0

16 (green).

Figure 2: Fx/x vs. z for x = π/4 (blue), 0.5 (purple), 0.25
(brown), 0.125 (green).

stronger at z = 0, but weaker at the tails (it’s ‘peakier’).
This is clarified in Fig. 2.

Integrated linearity from a locally nonlinear quad is not
a surprise: from the symmetry and Laplace’s equation, it
can be shown that the following expansion holds:

V (x, y, z) =
k

2
(x2 − y2)− k′′

24
(x4 − y4) + ... (6)

Taking derivatives to find the fields, and integrating for con-
stant x, y, we see that Eq. 5 holds for any choice of k(z).

Figure 3: Magnetic field of the 12Q12 quadrupole (dots),
measured at radius of 150 mm in the median plane vs. z in
mm. The 12Q12 aperture radius is 155.6 mm, thus,

√
2x =√

2y = π
4

150
155.6 . The continuous curve is the magnetic field

at this same radius using Eq. 4, normalized to agree at z =
0.

EXAMPLE QUADRUPOLES
The potential V of the sech2 quadrupole is periodic with

period π in the x and y directions. At large z, the cancel-
lation of this grid of alternating sign potentials ensures the
rapid exponential falloff of the field. This is somewhat re-
alistic. In the case of electrostatic quadrupoles, the ground
planes dashed in Fig. 1 can be thought of as some approxi-
mation of the beam pipe. In magnetic quadrupoles the yoke
takes the place of the ground surfaces. The yoke’s proxim-
ity to the pole faces results in a characteristically quicker
falloff as can be seen in Fig. 3, where the ideal sech2

quadrupole is compared with a real quadrupole, namely,
the TRIUMF 12Q12 (more on this quadrupole below).

Four choices of equipotential surfaces are shown in
Fig. 4, oriented so that the quadrupole axis is vertical.
Note the top left case is most like a long conventional
quadrupole; the most significant difference being that the
inside diameter varies along its length, as indicated by the
V = ±V0

16 curves in the plot of Fig. 1. The lower right
case in Fig. 4 would not give the correct fields without the
4 ground planes as the boundaries given by the 4 slender
rods alone are insufficient. But the longer quadrupole (up-
per left in Fig. 4) case would work quite accurately without
the ground planes.

As will be shown, this design has smaller aberrations
than conventional designs, i.e. poles having constant xy
cross section, truncated at each end. The only disadvan-
tage is that the shape is rather more difficult to fabricate,
having curvature on all directions.

Short Quadrupole Shapes
In the lower left of Fig. 4 (where the surfaces are strik-

ingly similar in shape to four American regulation foot-
balls) the potential of the shown surfaces is ±V0 and the
curvature of the pole in the longitudinal direction is the
same as in the transverse direction. This is an attractive
feature because it allows as a good approximation for the
pole to be symmetric along its axis, terminating in a spher-
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Figure 4: The coloured surfaces are 4 sets of equipotential
surfaces of the potential (4). The quadrupole axis is verti-
cal. In each case, the sides of the “box” containing the axes
are also the 4 ground planes. All 4 give identical fields and
the same sech2 on-axis strength function if they are given
the following potentials (left to right, top and then bottom),
±V0/16,±V0/4,±V0,±4V0 (adjacent surfaces have oppo-
site sign).

Figure 5: Cross section at z = 0 of the theoretical ideal
sech2 quadrupole (yellow and green) compared with draw-
ing of the TRIUMF 12Q12 superposed. The yellow and
green poles are circular in the orthogonal cross section, and
hence shaped very much like the American football. The
outer dashed square is at “ground” potential. Of the 12Q12
quadrupole, only the poles and the yoke are shown; coils
are omitted. The black dot right of centre is the location of
the Hall probe for measurements of Fig. 3.

Figure 6: The “football” electrode with superposed, the cir-
cular arc of radius 1.15 times the aperture radius (green),
4/π (1.27) times the aperture radius (blue), and 1.54 times
the aperture radius (red).

ical shape. What is the pole curvature that achieves this?
As the xy cross section is nearly hyperbolic, while the

xz cross section is nearly a circle, it is clear that choosing a
hyperboloid of revolution as shape is no better than choos-
ing a spherical shape. The latter has the advantage that it is
simpler to specify to the machinist.

As evident in the comparison in Fig. 5, the shape used
for practicality, namely cylindrical poles terminating in a
spherical pole-face, omits important parts of the “football”
(the triangular regions either side of the poles in Fig. 5).
This will have two effects: the quadrupole strength func-
tion k(z) will not precisely follow a sech2 law, and there
will be some integrated 12-pole. The former is of little
consequence, but the latter can cause aberration. However,
just as with the case of the 2D quadrupole, we can alter the
radius of curvature of the pole face to compensate the 12-
pole. (20-pole and higher are not of course compensated in
this technique but made slightly worse.)

In order to find the curvature radius that zeroes out the
integrated 12-pole, Laplace’s equation was solved for a
3D boundary model, using OPERA. I am indebted to Chris
Philpott of Buckley Systems Ltd. (New Zealand) for per-
forming the final optimization [6].

The result found is that the radius of curvature in units
of the aperture radius is 1.54± 0.01:

spherical pole-tip radius = 1.54 × (aperture radius). (7)

The uncertainty arises from the grid coarseness and also
from the variation due to surfaces “behind” the pole; sur-
faces which the engineer would be free to optimize for
practicality. The potential on these surfaces also de-
pends upon the insulator design in the case of electrostatic
quadrupoles and the coil layout in the magnetic case.

This curvature is shown as the red curve in Fig. 6: one
observes that it bulges past the “football” curve slightly on
either side of centre. The blue curve is seen to properly
match the “football” curve at the centre, and the green cur-
vature, which is commonly used for such quadrupoles, is
seen to not match the desired curvature at all. Reminder:
the curvature of the ideal football shape in the direction or-
thogonal to the plane of the figure is essentially the blue
curve.

The “12Q12” design
In the past, the short quadrupoles that have used rounded

poles have used curvatures that are too sharp and as a result
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Figure 7: Fourth derivative of k = sech2(z).

the 12-pole does not integrate to zero. See Reeve et al. [7].
Of course, the point harmonic A6(z) is not zero, but ∝
k′′′′(z) even for the ideal pure quadrupole case. See Fig. 7
for k = sech2(z). What is found in actuality is for example
Fig. 11 of Reeve et al. (1976) [7]: the 12-pole looks like
Fig. 7 on top of a nonzero background that is due to the
incorrect pole curvature.

Recently, quadrupoles of the design “12Q12/1.5” were
constructed by Scanditronix Magnet AB [8] for TRI-
UMF [9]. Their integrated multipole components were
measured, also by Scanditronix, using a rotating coil.
These magnets’ radius of curvature near the pole centre is
1.14 times the aperture radius, which is too small by a fac-
tor 1.35, but this was partially offset by using a hyperboloid
rather than a spherical shape. The 12-pole component was
found to be roughly 20 times larger than the other mul-
tipoles: 0.0032 times the quadrupole field, at a radius of
94 mm, where the aperture radius is 155.6 mm.

Long Quadrupole Example

The aim of this example is to demonstrate that the
conventional design quadrupole with a “tophat”-shaped
strength function, has higher aberrations than the sech2

quadrupole. Sech2 quadrupoles need not be short. Refer to
the V = ±V0

16 equipotentials in Fig. 1 to observe the shape
of a long sech2 quadrupole. The main difference in com-
parison with conventional quads is that the strength varies
continuously along the quad. One method of obtaining this
is to flare the aperture, varying it continuously from cen-
tre outward. Admittedly, this complicates the design and
would increase the construction cost, especially for super-
conducting quads.

For illustration, we take as an extreme example the
CERN LHC β? quadrupoles. We take as round fig-
ures, a length of 6 m, aperture radius of 35 mm, gra-
dient of 200 T/m, and use the Enge coefficients of the
“LHCHGQ” [10]. We construct a model sech2 quadrupole
of the same integrated strength (1200 T), and same inte-
grated squared strength of 240,000 T2/m. This latter en-
sures that the third order aberrations are the same [2]. The
Sech2 strength function scaled to satisfy these two integrals

Figure 8: Gradient (in T/m) vs. z (in m) for the CERN LHC
IP quadrupole (purple), compared with a sech2 strength
quadrupole of the same aperture (blue). Note that the latter
quad would be impractical on two counts: its field extends
outside the 6 m space allotted in the LHC, and it would
need to be 1.5 times stronger at its peak. The comparison
is only to illustrate that quads with optimally soft fringe
fields have lower fifth and higher order aberrations.

is

k(z) =

(
300

T

m

)
sech2

( z

2 m

)
(8)

Using COSY-∞ [11] and a proton energy of 7 TeV, we
compared the aberrations to seventh order; these are shown
in Table 1. (For the LHCHGQ, we had to modify slightly
the COSY-∞ routine FFELE as the fringe field given in
ref. [10] has an anomalously large extent). For the imple-
mentation of the sech2 quadrupole in COSY-∞, see Ref. [1].

As expected, the third order aberrations are the same for
the two types. The thin lens formula for the aberrations
is [2]:

∆x′ =

∫
k2dz

(Bρ)2

(
−1

3
x3 − xy2

)
(9)

= −0.000147

m3
x3 − 0.000440

m3
xy2

∆y′ =

∫
k2dz

(Bρ)2

(
−x2y − 1

3
y3
)

(10)

= −0.000440

m3
x2y − 0.000147

m3
y3

These agree well with the values in Table 1, when the thick
lens effect is taken into account. (This reduces the aberra-
tion effect in the focusing direction and exacerbates in the
defocusing direction.)

But at higher than third order, the aberrations are not at
all the same. The fifth order aberrations are about 200 times
smaller for the sech2 quadrupole, and the largest seventh
order coefficients are roughly 100,000 times smaller for the
sech2 quadrupole. For ninth order, the ratio is 108.

It is doubtful that a superconducting quadrupole with
Eq. 8 as strength function is at all feasible, and in any
case would be too long to fit into the interaction region
of the LHC. Further, there is nothing to suggest that the
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LHCHGQ quad sech2 quad
∆x′ or ∆y′ ∆x′ or ∆y′ mn

-0.4877909E-01 -0.4879330E-01 10
0.5406070E-01 0.5407527E-01 01
-0.1154336E-03 -0.1134717E-03 30
-0.3724576E-03 -0.4038506E-03 21
-0.4881636E-03 -0.4714397E-03 12
-0.1822114E-03 -0.1867242E-03 03
0.1017362E-02 -0.2979146E-05 50
-0.7305652E-02 -0.1326917E-04 41
0.4749991E-02 -0.2637724E-04 32
-0.7580379E-02 -0.3096770E-04 23
0.2348281E-02 -0.1566155E-04 14
-0.8101367E-03 -0.3084560E-05 05
-0.1109434 -0.1215269E-06 70
0.9689789 -0.6573820E-06 61
-0.7151169 -0.1949172E-05 52
1.312496 -0.2858019E-05 43
-0.2433022 -0.2866705E-05 34
0.5811675E-02 -0.2532962E-05 25
0.6676453 -0.8507323E-06 16
-0.1404954 -0.1333598E-06 07

Table 1: Aberration coefficients of the LHC “high gradient
quadrupole”, compared with quadrupole of sech2 strength
function. m and n are the exponents of x and y; for exam-
ple, the fourth line is the coefficients for x2y.

aberrations calculated for the LHCHGQ quads in any way
limit the performance of the LHC. However, this compar-
ative study puts to rest the notion that quadrupoles with
smoothly varying strength function, being in a sense “all
fringe field” [7], are optically inferior to more conventional
quadrupoles with harder edges. In fact, quite the opposite
is true.

The k(z) ∝ sech2z/D case is not special; any smoothly
varying k would have similar low aberration properties.
The advantage of the sech2 case is that there is a handy,
simple expression for the potential, and at least in the case
of very short quads, this expression is a good approxima-
tion.

Thus our results can be understood as follows. In the
traditional design, the poles terminate abruptly, and this re-
sults in aberrations that scale with the ratio of beam size
to aperture, raised to a power appropriate for the order of
the aberration. In the case of the design proposed here, the
aberrations scale with the ratio of beam size to quadrupole
length, raised to that same power.

CONCLUSIONS
We have derived an analytic potential for quadrupoles,

both long and short. The strength function, instead of step-
ping up abruptly at the entrance and down at the exit, varies
smoothly throughout the quadrupole. We have shown that
this results in lower field aberrations.
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