
NEW DEVELOPMENTS ON THE FAIR DATA MASTER

M. Kreider, R. Bär, D. Beck, W. Terpstra, GSI, Darmstadt, Germany

J. Davies, V. Grout, Glyndŵr University, Wrexham, United Kingdom

Abstract

During the last year, a small scale timing system has been

built with a first version of the Data Master. In this paper,

we will describe field test progress as well as new design

concepts and implementation details of the new prototype

to be tested with the CRYRING accelerator timing system.

The message management layer has been introduced as a

hardware acceleration module for the timely dispatch of

control messages. It consists of a priority queue for out-

going messages, combined with a scheduler and network

load balancing. This loosens the real-time constraints for the

CPUs composing the control messages noticeably, making

the control firmware very easy to construct and determinis-

tic. It is further opening perspectives away from the current

virtual machine-like implementation on to a specialized pro-

gramming language for accelerator control. In addition, a

streamlined and better fitting model for beam production

chains and cycles has been devised for use in the data master

firmware. The processing worst case execution time be-

comes completely calculable, enabling fixed time-slices for

safe multiplexing of cycles in all of the CPUs.

OVERVIEW AND SYSTEM LAYOUT

As discussed in our previous papers [1, 2], the FAIR ac-

celerator will be a highly complex system which needs a

control system to match. This suggests a design that supports

high performance, flexibility and deterministic command

generation and distribution. While all machine commands

for beam production will be calculated from physics data

ahead of time, all final scheduling and deterministic delivery

is the responsibility of the Data Master (DM). The DM itself

is a hybrid of an industrial PC and a Field Programmable

Gate Array (FPGA) based embedded real-time system with

hardware acceleration modules. We will now discuss the

system layout of the current implementation and the inner

workings of the sub-modules in greater detail.

CONTROL DATA

Structure

The control data received by the DM broadly resembles a

flowchart for beam production. It consists of 2..I alternative

beam production scenarios, called plans. Each plan has 1..J

event chains in it. Chains are the basic building blocks. They

each contain 0..K command messages. They also come with

the means for simple control structures. The input format is

currently XML based and converted to a binary format for

the embedded system.

Time

From the start of a plan, all times are relative offsets. Each

chain has a given duration, and chain start times are calcu-

lated by adding up previous durations. The only exception to

the rule is a conditional wait. Here, the start time of the next

chain is set to time the condition was fulfilled, plus a fixed

offset. An absolute execution time is calculated for each

command message at the moment it is dispatched. This is

done by adding the message offsets to its chain’s start time.

EMBEDDED SYSTEM

Figure 1: Scheduling commands in the Soft-CPU Cluster.

Layout and Firmware

The LM32 (Lattice Mico 32 Micro-controller) is a 32

Bit RISC processor for use in Field Programmable Gate

Arrays (FPGAs) and Application Specified Integrated Cir-

cuits (ASICs) and a good choice for a control system [3].

Timer Interrupts were unsuitable for dispatch due messages,

because saving and restoring all 32 registers takes consider-

able time and not all instructions have the same execution

time. Furthermore, it would have meant the processors be-

ing idle most of the time. In order to build a deterministic

system with a low reaction time, a polling approach with

fixed time slices was used and multiple Soft CPUs were

instantiated to deal with different parts of beam production

in parallel, aided by hardware acceleration cores. Each of

the LM32 runs very simple firmware with three responsibili-

ties for each iteration. The first is synchronization, meaning

checking conditions or signalling another process(or). Next

comes processing the current chain. This means sending

a due command message to the priority queue. The third

is to check the command interface for external instructions

from the control system. All worst case execution times

are completely deterministic. The only exception would be

dispatch, because the network interface is a shared resource

for all cores. The current testbed only features one thread

FPO022 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

204C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technologies



per LM32 as yet. Figure 1 shows how the control data is

evaluated in each iteration by the CPU cluster.

DEDICATED HARDWARE

This leaves the problem of arbitration and gathering these

messages. They must also be ordered by urgency before

adding them to network packets because different commands

will have different requirements for control lag. Kicker

Magnet control at FAIR will require a lag below 500 µs

while commands to the vacuum system can easily be im-

plemented with a margin of seconds. Last but not least the

payload/packet-size ratio should be high in order to make

the most of the limited bandwidth. An additional core with

a priority queue was introduced to deal with these require-

ments, making the whole system a heap on top of a calendar

queue. The messages need to be wrapped in the EtherBone

(EB) [4] network protocol when adding them to a network

packet. In our earlier prototype, we used a full port of the

x86 EB library. This is very impractical for various reasons

and a wasteful solution in terms of RAM. Instead, an EB

Master was implemented as a hardware core, providing a

simple and fast bridge from the local Wishbone (WB) [5]

bus over the network interface to the remote WB bus of the

controlled endpoints.

Priority Queue

All command messages consist of device parameters and

their execution timestamp. The priority queue uses the times-

tamp part to sort the messages in order of urgency, device

parameters are payload and will reside in an extra RAM.

There are several ways to implement priority queues, de-

pending on the focus. In our case, we aim for minimal

execution time of the get-Min and extract-Min operations,

which returns the minimum key element.

In order to get a better performance than sequential re-

ordering in software solutions can provide, multiple parallel

accesses to the RAM are necessary. The underlying con-

straint for efficient sorting is the ability to read both child

nodes at the same time and write the falling node to the

former parent. FPGAs natively only provide dual port mem-

ory (DPRAM). An ASIC design can have more read ports

to the same content without any problem. If this is to be

emulated in an FPGA, memory and routing costs increase

considerably.

RAM-based Heap At least two independent read ports

are required on the RAM holding the sorting keys, so both

left and right child node can be read at the same time. With

the moving element in a register, it is possible to compare

parent and both children in a single cycle. For reordering,

an independent write port is required, so the minimum is a

3 port RAM (2 read, 1 write). Many manufacturers provide

macro cores which emulate a multi-port RAM with 2 read

and 2 write ports. However, the synthesizer can only achieve

this by replication. So instead, it is more efficient to exploit

the fact that the read ports never access the same child node

and keep left and right children in two different DPRAMs.

Figure 2: Heap-based priority queue in FPGA DPRAMs.

As Figure 2 shows, no redundant copy of the keys is nec-

essary, and the arbitration logic is mostly Multiplexers and

Write enable signals controlled by the least significant bit

of the node index. The path taken through the heap is a

sequence of indices. Placed in shift register, it can be used

as addresses to order the message payload with constant

delay to the key sorting. This simple design can implement

INSERT and REMOVE Operations in O(log(n)) time, with

one comparison/move per clock cycle per heap level plus

two cycles delay and minimal memory cost. But there is still

much room for improvement.

Optimizing the Solution Firstly, REMOVE operations

can only be pipelined if all heap levels are accessible in paral-

lel [6]. Secondly, because REMOVE and INSERT normally

work in different directions, pipelining of mixed operations

is prevented. At the cost of fan-out and additional arbitration

logic, one can reformulate the INSERT operation to work

from top to bottom as well. In addition, two DPRAMs, one

for left children, one for right, are necessary per level so

each level is a pipeline stage that can move one element and

all operations must work from top to bottom.

Both solutions combined are likely to be the most high-

performance implementation of this design, managing one

INSERT or REMOVE per two or three clock cycles, depend-

ing on desired design frequency. This is, however, slightly

overpowered for our scenario for two reasons. The first lies

in the layout of memory blocks in modern FPGAs, which

are too big for the top heap levels and would result in wasted

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO022

Hardware Technologies

ISBN 978-3-95450-146-5

205 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



memory [7]. The second reason is possible maximum speed.

As we want a low system reaction time and elements in

the heap are committed to be sent, it is not sensible to pro-

vide more than two EB packets(1500 Bytes - header) [4] of

command messages. This makes the max. heap elements

n =
2(1500B−8B)

(8+2)4B
= 74.6 and max. heap depth would be

log2(n) = 7. For our design, this equals a min. dequeueing

time of Td min = n + 2 = 9 clock cycles. Taking a look at

the timing constraints for queuing and dequeuing, we have

relaxed conditions on the input side and leave a larger margin

for packet processing. On the output side, we want the pos-

sibility to dequeue with line speed and catch up after delays.

In our scenario, the 64 bit wide keys to be sorted come with

a payload field of 192 bits, which equals 8 words at 32 bit.

Absolute minimum output would be line speed of the Giga-

bit Ethernet interface, which is 8 bit/125 MHz → 256 ns

dequeue, bus speed is 32 bit/62.5 MHz → 128 ns dequeue

→ 8 Clock cycles. So a dequeuing time of 8 <= Td < 16

clock cycles already works well with a heap depth of 6 to

13, making the simpler implementation a valid approach for

our timing requirements.

EtherBone Master

The EtherBone Master(EBM) core translates WB bus

operations into the EB network protocol [4]. The main ob-

stacle was a basic property of WB, which is it being a cycle

based bus. This means that all operations have to be com-

pleted/acknowledged before a cycle can be finished. Over

the network, this would lead to very high lag, stalling a local

bus device, with the added risk of packet loss and there-

fore unacknowledged operations stalling the bus indefinitely.

Our solution was to design a core which presents a simple

interface to the user and fully conforms to the wishbone

standard [5] and avoids the risk of freezing the local bus.

EBM Design It consists of two distinct WB slaves. The

first is used for configuration, such as source and destination

addresses for the network layer and additional information

needed by EB [4]. The second slave acts as a write-only

FIFO Buffer for WB operations to be sent. This way, the

EBM can acknowledge all incoming data immediately, since

it is not waiting for remote data. All replies go to the local

EB Slave core. This now leads to several problems, first

and foremost that directly using address and value of local

WB operations is not possible. The reason is that the EB

Master is itself a WB slave, occupying a certain address. The

high address bits depend on its own position in the crossbar

hierarchy and might be different from those of the remote

target device. Another two bits are needed because control

and data interface as well as read and write operations have

to be distinguished. Our solution is therefore to replace all

high address bits by the content of a control register which

must be set according to the remote target address.

In the case of a WB write operation, address and value

have the normal meaning except for the high address bits. A

read operation is different. It is turned into an EB write on

the destination platform, writing back the requested values

to the source. For this purpose, the address is the location

to be read on the destination, but the value is the location on

the source’s bus where the return value is to be written. A

flush command to the control register delivers the content to

the network interface.

Fitness for DM Because command messages will al-

ways follow the same 8-word-write scheme, it is true that

meta data is known in advance and a faster and much sim-

pler core would have sufficed for the DM. The fixed format

still makes encoding command messages deterministic. The

EBM therefore turned out to be a good fit with added flex-

ibility, obviating the need for a DM specific solution. It is

also a powerful component, suitable for generic remote WB

access.

The introduction of a generic representation for accelera-

tor control in form of an XML string has already proven a

great help for rapid development and generating test data. It

is also invaluable for debugging. With the addition of hard-

ware modules for sorting and sending command messages,

most sources for non-determinism could be removed from

the DM design. Both modules have been tested with the

new data format on a quad-core embedded system in a lab

environment and tests to generate timed pulses on a timing

endpoint were satisfactory.

The DM has yet to be fully integrated with the FAIR

control system and further to prove its ability to control the

real CRYRING accelerator by early 2015.

REFERENCES

[1] M. Kreider, R. Bär, D. Beck, J. Davies, and V. Grout. The

fair timing master: A discussion of performance requirements

and architectures for a high-precision timing system. In Proc.

of the International Conference on Internet Technology and

Application ITA, September 2013.

[2] R. Bär, T. Fleck, M. Kreider, and S. Mauro. The timing master

for the fair accelerator facility. In Proc. of the International

Conference on Accelerator and Large Experimental Physics

Control Systems ICALEPCS, pages 642–645, October 2011.

[3] W. Terpstra. The case for soft-cpus in accelerator control sys-

tems. In Proc. of the International Conference on Accelerator

and Large Experimental Physics Control Systems ICALEPCS,

pages 642–645, October 2011.

[4] M. Kreider, R. Bär, D. Beck, W. Terpstra, J. Davies, V. Grout,

J. Lewis, J. Serrano, and T. Wlostowski. Open borders for

system-on-a-chip buses: A wire format for connecting large

physics controls. Phys. Rev. ST Accel. Beams, 15:082801, Aug

2012.

[5] Wishbone b4 wishbone system-on-chip (soc)interconnection

architecture for portable ip cores. Technical report, OpenCores,

2010.

[6] Wojciech M. Zabołotny. Dual port memory based heapsort im-

plementation for fpga. volume 8008, pages 80080E–80080E–9,

2011.

[7] Embedded memory blocks in arria v devices. Technical report,

Altera Corperation, 2014.

FPO022 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

206C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technologies


