
REDESIGN OF ALARM MONITORING SYSTEM APPLICATION 
 

S.Aytac, DESY, Hamburg, Germany 

Abstract 
The alarm monitoring system ‘Beamline-

AlarminfoClient’ is a very useful technical-service 
application at DESY, as it visually renders the locations 
of important alarms in some sections (e.g. fire or other 
emergencies). The aim of redesigning this application is 
to improve the software architecture and allow the easy 
integration of new observable areas including a new user 
interface design. This redesign also requires changes on 
server-side, where alarms are handled and the necessary 
alarm information is prepared for display. Currently, the 
client manages alarm data from 17 different servers. This 
number will increase dramatically in 2014 when new 
beam lines come into play. Thus creating templates to 
simplify the addition of new sections makes sense both 
for the server and client. The client and server are based 
on the Tine control system and make use of the Tine-
Studio utilities, the Alarm Viewer and the Archive 
Viewer. This paper presents how the redesign is arranged 
in close collaboration with the customers. 

INTRODUCTION 
BeamlineAlarminfoClient (BAiC) is a visualization of 

emergency alarms in different areas. Currently it is used 
in the experimental halls PETRA III, FLASH and Photon-
Science (PS) with 17 areas to be monitored. 

The start of the first project was in 2004 and only used 
for monitoring FLASH area. Then PS alarms were added 
and at finally PETRA III. Since 2012 the FLASH 
extension project has been running and separated to 
FLASH-I and FLASH-II with independent FEL sources. 
In 2014 the PETRA III extension project began, with 
additional halls in the north of the storage ring and one in 
the east. The near future will give us ~30 areas to be 
monitored. 

Aim of the Software Project 
The functionality of the application is mostly defined 

by the customers and is regarded as an additional 
diagnostic for the technical-service personnel at DESY.  

The followings alarms are monitored and displayed: 
 
1. gas (concentration, magnetic- & exhaust valves) 
2. fire 
3. water 
4. emergency call  
5. emergency stop 
6. common errors 

 
The GUI is split into main and area views (outlined in 

Figure 1). If an area alarm is identified, a popup window 
of this area becomes visible, the active alarm is listed in 

the area table, and the alarm location toggles on the area 
plan. When the alarm is cancelled the popup becomes 
invisible and the alarm is listed in the main view alarm 
table of the last 72 hours. 

 

 

Figure 1: BeamlineAlarminfoClient GUI functionality of 
main and area view. 

 
The Tine-Tool Archive Viewer is used for trending gas 

concentrations and Alarm Viewer for long time archiving 
of emergency alarms. 

Motivation 
Due to an unexpected increase in monitored areas, there 

is now a unique source code for every area server in the 
previous project. In 2013 a redesign of the project led to 
more maintainable software. 

The main objective of this redesign is to reduce the 
project-code changes to a minimum of entries resulting 
from a new area as well as to reduce the communication 
links between server and client. In addition an upgrade of 
the graphical user interface is planned. 

SYSTEM ARCHITECTURE 
Every building displays one or more client application. 

The locations of these displays are at the entry of every 
building. Hence they are readily visible for technical-
service personnel. 

BeamlineAlarminfoClient AT DESY

FPO029 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

216C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Data Displays



The client uses the tine control system [1] to get data 
from the server and communicates with each of the n 
servers. Thus each server has m number of clients to 
provide with data (as outlined in Figure 2).  

 

 

Figure 2: Communication between different server layers 
and the client. 

Server 
Before the client can display any data, this information 

has to be provided from a device server. Consequently the 
device server development depends on what alarm 
information the client needs to display. Due to the 
dependency of client and server development the main 
client requirements were discussed with the customers 
prior to any server development. 

 

   

Figure 3: Device server architecture. 

 
The server has priority because without data the client 

has nothing to display. In addition most logical operations 
concerning alarm handling are implemented at the server 
side. In Figure 3 the simplified server architecture is 
shown.  

With the device wizard server [2] a basic source code 
for a device server is generated. Accordingly the 
programmer focus is on developing the handling of 
alarms.  

During alarm handling (see Figure 4) SPS hardware 
data is checked for pre-defined emergency alarms. This 
data check occurs during the update() method of the 
device server. First the device server receives data from 
the CDI server, which maps the SPS hardware data. This 
data represents the value of emergency alarms.  

Alarms are divided into alarm sensor states (digital 
alarm) and values of gas concentration (analog alarm). 
The server extracts the alarm information and checks 
digital alarms and, if needed, the analog alarms (if a gas 
alarm is set). 

 

 

Figure 4: alarm handling. 

 
All active alarms are saved into a list and sorted by 

their timestamp, and made available through property 
calls (active alarms). The cancelled alarms are listed 
separately and made available as an additional property. 

Client 
The client GUI is divided into jddd panels [3] and other 

java implementations. Jddd is useful for creating GUI 
components quickly, like displaying states of alarms with 
their icon location on the area plan. The main 
implementation is in rich-client java code.  

 

 

Figure 5: MVC pattern. 

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO029

User Interfaces and Data Displays

ISBN 978-3-95450-146-5

217 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



The GUI uses the model-view-control (mvc) 
architecture for receiving and displaying data from 
servers. Figure 5 shows the functions of the mvc 
components. The controller controls all views and models 
and for every area an instance of a model and view is 
created. An array list of area server is used in the 
controller class to initialize area views and models. 

Communication 
As previously mentioned some device server properties 

are utilized in simple jddd panels. However this is not 
discussed in this paper. Instead we focus on the tine call 
links used in the main rich-client java code. Only one call 
back data link is defined to receive a property labelled 
infobyte. This property contains information about the 
CDI server state, existing active alarms, and whether or 
not an area alarm info text has been edited. Only when a 
flag is set in the received infobyte property, is the 
corresponding property called from the server. This 
process is shown in Figure 6. 

 

 
Figure 6: Client/Server communication, tine calls. 

STATUS / SUMMARY 
At the end of this year the goal is to start with the alpha 

test of this project. First tests with some parts of server 
and client, primarily the correct extraction and 
representing of the alarm states, have already passed 
successful.  

On upgrading the GUI the view became similar to the 
previous one, so that better recognition for the technical 
service is possible.  

The server/client communication was reduced to one 
tine call back link. Now only one server project exists 
with initializing files for a new area. Only the files have 
to be created or updated and only one project source code 
has to be edited. Parallel to this, new areas can be trivially 
added to clients.  

As long as no new application functionalities are 
demanded on customer side the project maintenance has 
been dramatically simplified.  

 

 

REFERENCES 
[1] TINE; http://tine.desy.de 
[2] Josef Wilgen, “First Experiences with a Device 

Server Generator for Server Applications for PETRA 
III”, PCaPAC08, Ljubljana, Slovenia 

[3] jddd; http://jddd.desy.de 

FPO029 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

218C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Data Displays


