
INEXPENSIVE SCHEDULING IN FPGAS
W. W. Terpstra, D. Beck, M. Kreider, GSI, Darmstadt, Germany

Abstract
In the new scheme for machine control used within the

FAIR project, actions are distributed to front-end controllers
(FEC) with absolute execution timestamps. The execution
time must be both precise to the nanosecond and scheduled
faster than a microsecond, requiring a hardware solution.
Although the actions are scheduled at the FEC out of order,
they must be executed in sorted order. The typical hardware
approaches to implementing a priority queue (CAMs, shift-
registers, etc.) work well in ASIC designs, but must be
implemented in expensive FPGA core logic. Conversely, the
typical software approaches (heaps, calendar queues, etc.)
are either too slow or too memory intensive. We present an
approach exploiting the time-ordered nature of our problem
to sort in constant time using only a few memory blocks.

INTRODUCTION
In a schedule-driven control system, pending actions in-

clude an execution timestamp. When the timestamp matches
the current time, the responsible front-end controller (FEC)
executes the action. Within the scope of the FAIR project,
many physically distributed FECs will execute actions in
concert. Actions are coordinated and distributed by a central
unit, the data master, which controls beam production.
Unfortunately, the data master is quite complicated. The

actions it requires a FEC to take may be delivered in an order
different than the execution order. This paper describes how
a FEC takes an incoming set of out-of-order actions and
outputs them in sorted order. In principle, a single FEC may
control many devices attached to many interfaces. However,
for the purposes of this paper, we will concern ourselves
only with the actions delivered by a FEC through a single
interface. We also omit message processing.
Concretely, a FEC processes action tuples (a, x) , where

a is the action to execute and x is the time at which it must
be executed. At any given time t, the FEC has a set Pt of
pending/yet-to-be-executed tuples. That is, x ≥ t for all
(a, x) ∈ Pt . At time t, the FEC must output a if (a, t) ∈ Pt ;
this is illustrated in Figure 1. Obviously, it is physically im-
possible for a single interface to execute two actions concur-
rently. The data master would never ask a FEC to do some-
thing impossible. Therefore, we can assume x = y → a = b
for {(a, x), (b, y)} ⊆ Pt .

Figure 1: Actions (a, x) flow from the data master to the
FECs. They are stored in Pt until t = x and then output.

For FAIR, the control system is required to have nanosec-
ond precision. This means that at least the execution/output
of actions must be synchronized by hardware. Furthermore,
the data master distributes the schedule via gigabit Ethernet.
The FECs must be capable of accepting the schedule at the
full rate, which suggests hardware may be required here as
well. FECs include an FPGA and therefore we choose to
solve the problem of receiving the schedule, sorting it, and
outputting it, all in the FPGA.

AN FPGA CRASH COURSE
We can program an FPGA to contain customized hard-

ware. Like an application-specific integrated circuit (ASIC),
we can implement any digital circuit consisting of logic gates
and registers. Unfortunately, FPGAs only have a limited
number of comparatively slow logic elements to implement
core logic (logic gates and registers). FPGAs also include
many block memories, which are essentially small SRAM
chips embedded inside the FPGA. These block memories
have the same density and performance as they would in
an ASIC. For these reasons, a good FPGA design tries to
minimize core logic by leveraging block memory.
Digital logic is generally clocked. Registers take their

values on the rising edge of a clock signal. In a modern
FPGAwith a reasonably complicated design, the clock speed
is generally limited to<500MHz. Thatmeans that each clock
cycle takes >2ns. The particular sorting circuit presented
here can run at 325MHz (≈3ns period) on an Altera Arria
V chip. To achieve nanosecond precision, this means we
need to be able to output an action in very few clock cycles.
Furthermore, we need to accept new tuples at a similar rate.
Our goal is thus to accept a tuple (a, x) on clock cycle t

to compute Pt+1 = Pt ∪ {(a, x)}. Furthermore, if there is
(a, t) ∈ Pt , then we output a. In other words, on every clock
cycle, we need to potentially accept a new action into the
buffer and output the action whose timestamp is due.

APPROACH
Sorting a set of n = |Pt | numbers requires O(n log(n))

comparisons. If wemust sort one timestamp every cycle, that
means log(n) comparisons per cycle. For FAIR, timestamps
are 64-bit numbers. In a modern FPGA, comparing even a
single pair of 64-bit numbers in one clock cycle would re-
duce the maximum performance to ≈125MHz. A hardware
technique called pipelining can spread this work between
multiple clock cycles. In our implementation, a 64-bit com-
parison is done in 3 steps to achieve the target performance.
Unfortunately, this makes the comparator quite expensive.
While there are techniques to spread out the work of all
log(n) comparisons across multiple cycles using pipelin-
ing [1], these approaches cost significant hardware.

Proceedings of PCaPAC2014, Karlsruhe, Germany TCO301

Hardware Technologies

ISBN 978-3-95450-146-5

147 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

We solve the scheduling problem in a different way, re-
quiring only 1 comparison per cycle. The key insight is that
we do not actually need to solve the sorting problem. We
only need to output the current action a for time t. Sorting
requires finding in each step the next smallest timestamp.
We only need to find actions with the current timestamp.

Imagine a gigantic table T that stores actions. At any
given time t, you locate row t in the table and read out the
action to execute; a = T[t]. Every time a new tuple (a, x)
arrives from the data master, you just write a into entry x in
the table; T[x] := a.
The only problem with this simple approach is that the

table must have 264 entries, one for each possible time x.
We must find a way to store the table more compactly. The
first thing to keep in mind is that an FPGA design has finite
physical resources. We must define an upper limit to the
number of pending actions which the FPGA design can
store. This limit can be reconfigured whenever the FPGA
is reprogrammed and currently we have set it to 256. Block
memory in a modern FPGA is only available in ≥256-entry
chunks, so anything less is no cheaper.

With only 256 entries, we cannot directly implement the
gigantic look-up table. However, we can record anything that
happens in the next 256 cycles. Just check if an incoming
tuple (a, x) obeys t <= x < t + 256. If it does, then set
T[x mod 256] = a. On clock cycle t, just look up a =
T[t mod 256] and clear T[t mod 256] for re-use later.

Unfortunately, tuples arriving from the data master may
be far in the future; x ≥ t + 256. If we wrote them into the
table anyway, we would execute them too early. However,
we must still record these actions somewhere! Our scheme
is to instead use two tables. There is one (unsorted) table
used to store all pending actions, the pending table. There is
another table used to record references to the pending table
for those actions with timestamps due in the next 256 cycles,
the calendar. This is illustrated in Figure 2.

Figure 2: An example of 8-entry compressed tables.

Of course, these two tables alone do not solve the problem.
Actions which execute more than 256 cycles in the future do
not appear in the calendar. However, we can continuously
scan the pending table’s records, one record per clock cycle.
If the pending record has a timestamp due within 256 cycles

(x < t + 256), put a reference into the calendar. In fact, once
we have this scanner process, we no longer need to write
incoming tuples into the calendar at all. We need only write
the tuple into the pending table and the scanner will put a
reference into the calendar for us.

The reason this scheme works is that the scanner is guar-
anteed to fill the calendar before an action must be executed.
Pick an arbitrary tuple (a, x) from the pending table. Define
u as the time when the tuple was stored into the pending ta-
ble. Because t grows without bound, eventually x < t + 256
and the scanner will put a reference in the calendar. Define
time v to be the first time that the scanner does this. The
scanner re-scans the records in the pending table every 256
cycles. Thus, at time w = v−256, as long as (a, x) is already
in the table (u < w), the scanner will have previously vis-
ited the record. However, since v was the first time t where
x < t + 256, we know that x ≥ w + 256 = v. In other words,
a reference to (a, x) is placed into the calendar at time v,
before it must be executed (x).
The above proof requires that the tuple is already in the

pending table at time w. Recall that at time t = v, a reference
will be placed into the calendar because x < t + 256, and
thus x−256 < v. Therefore, to ensure correct behaviour, we
require tuples to be delivered early; u < x − 256− 256. This
implies that u < v−256 = w, as required in the proof. What
this means is that you must store a tuple into the pending
table 512 cycles before its execution timestamp. Fortunately,
in FAIR a time budget of 4µs is quite reasonable; this allows
us to run as slowly as 125MHz (8ns period).

DESIGN
For a complete implementation, we must also manage the

free entries in the pending table. A new incoming action
must be written into an empty record in the pending table.
When an action is executed, the dispatcher already removes
the reference from the calendar. However, the entry in the
pending table must be released as well. To facilitate alloca-
tion and release, we implement a manager that records free
pending indexes in a free stack.

Figure 3: Block Diagram of block memories and processes.

As shown in Figure 3, we have in total three tables: pend-
ing, calendar, and free. They are controlled by three pro-
cesses: dispatcher, scanner, and manager. On each cycle, the

TCO301 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

148C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technologies

dispatcher checks the current time in the calendar for a refer-
ence and erases whatever it finds. It then fetches the action
from the pending table and outputs it. Finally, it tells the
manager to free the pending entry. The scanner repeatedly
walks the pending table. If the scanned record has a times-
tamp < t + 256 (the only comparator/adder in our design),
the scanner writes a reference to that soon-to-be-executed
record into the calendar. The manager accepts new tuples
from the network and stores records into the pending table.
If the manager must both allocate and free a record, it over-
writes the freed record with the new tuple. If it must only
free, it pushes the free pending-table index to the free stack.
If it must only allocate, it pops the free stack and stores the
tuple to the free index.
One very annoying constraint in FPGA design is that a

block memory can only execute a single write and a single
read per cycle. The free stack poses no problem here; the
manager at most reads or writes one entry per cycle. The
manager is also the sole writer to the pending table. The
action column of the pending table is only read by the dis-
patcher, so this poses no problem. The timestamp column
(in our actual implementation) is read by both the scanner
and the dispatcher. However, two readers and one writer
can be implemented by duplicating the table. What is not so
straight-forward is the calendar.

The calendar is only read by the dispatcher. Unfortunately,
it is both written by the scanner (to add references) and
erased by the dispatcher (to remove references). On some
platforms, one can implement same-address get+erase using
one half of a true dual port memory. Sadly, this trick is not
portable (same-port old-data) and does not work on the Arria
V. Instead, we used two bank-interleaved block memories.
Since t is incremented every cycle, it changes parity every
cycle. Thus, we can read from the next even memory address
t + 1 at the same time as we erase the odd memory address t.
To achieve high performance, each of the processes is

heavily pipelined. Unfortunately, this creates a structural
hazard. The scanner might write a reference into the calendar
where the dispatcher is only halfway-done executing. To
solve this, we just increase the width of the calendar slightly,
and forbid the scanner from writing near the position of
the dispatcher. Pending records near the scanner thus get
scanned twice before being executed by the dispatcher, and
only one of those times can be a structural hazard.

OUTLOOK
We presented a way to output actions scheduled according

to their timestamps. While the actions arrive in unsorted
order, we are still able to accept and output one action every
clock cycle. Due to careful pipelining, the design can run
at up to 325MHz on an Altera Arria V. The design uses
only three memory blocks, one 64-bit comparator, and three

very simple processes. The low cost of this solution was
achieved by formulating the real-time scheduling problem
as a lazily-updated look-up table.

Our approach has many similarities to calendar queues [2].
However, unlike calendar queues, time spent inspecting
empty calendar entries is not time wasted. In a calendar
queue, one must retrieve the next scheduled action. In real-
time scheduling, we need only retrieve the action scheduled
for the current time. Calendar queues thus suffer the same
sorts of problems as bucket- and radix-sort [3]; they depend
on the distribution of execution timestamps and performance
can become significantly degraded.
Unfortunately, even our approach is not completely im-

mune to a poor timestamp distribution. If, for some reason,
more than 256 pending actions need to be stored at once, the
block memory used for the pending table will be exhausted.
For this reason, the FAIR data master only schedules actions
that will be executed in the immediate future.
Compared to a heap-based approach [1], our approach

deals poorly with two actions scheduled to occur simultane-
ously. While this situation must be avoided in any case, as
the relative order between two simultaneous actions is unde-
fined, a heap implementation would at least output these two
actions back-to-back. Our approach will instead delay one of
the actions by 256 cycles. We think that the significant area
and performance benefit inherent to our approach justifies
this small concession.
Finally, in an ASIC, it might make sense to use a shift-

register-based approach [4]. To implement this in an FPGA
would be prohibitively expensive as the storage of the records
must be done in registers, not block memory. Even in an
ASIC, the necessary CAM-like shift-register setup will cost
far more than an equivalent SRAM. Indeed, it is hard to
imagine any solution exists which is significantly smaller or
faster than the one we propose here.

REFERENCES
[1] Wojciech M Zabołotny. Dual port memory based heapsort

implementation for FPGA. In Photonics Applications in As-
tronomy, Communications, Industry, and High-Energy Physics
Experiments 2011, pages 80080E–80080E. International Soci-
ety for Optics and Photonics, 2011.

[2] Randy Brown. Calendar queues: a fast 0 (1) priority queue
implementation for the simulation event set problem. Commu-
nications of the ACM, 31(10):1220–1227, 1988.

[3] D. Knuth. Sorting by distribution. In The Art of Computer
Programming, Volume 3: Sorting and Searching, chapter 5.2.5,
pages 168–179. Addison-Wesley, 3 edition, 1997.

[4] Chen-Yi Lee and Jer-Min Tsai. A shift register architecture for
high-speed data sorting. Journal of VLSI signal processing
systems for signal, image and video technology, 11(3):273–280,
1995.

Proceedings of PCaPAC2014, Karlsruhe, Germany TCO301

Hardware Technologies

ISBN 978-3-95450-146-5

149 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

