
TESTBED AUTOMATED HARDWARE-IN-THE-LOOP TEST
FRAMEWORK

P. Maslov, K. A. Meyer, K. Žagar, Cosylab, Ljubljana, Slovenia

Abstract
In a big physics facility such as ITER or ESS, the

control system is typically updated at least 3 times a year.
This means that prior to each minor release all
components should be tested. For testing DAQ drivers, a
test plan should be written, based on which a manual test
is performed. The idea behind the TestBed suite is to
execute tests automatically. Our TestBed is a PXI chassis
which contains an embedded controller running the
CODAC control system on a Scientific Linux operating
system and a DAQ board capable of generating and
acquiring analog and digital signals. It provides an easy-
to-use framework written in Python and allows for the
quick development and execution of automatic test
scripts.

ARCHITECTURE
From the hardware perspective, each system under test

(SUT) is physically connected to the TestBed (TB) (Fig.
1) with a connector board using a predefined pin
configuration. Both SUT and TB are connected to the
LAN (not shown in Fig. 1).

The software part consists of three tiers:
1. Software that provides the desired functionality of

a DAQ board:
• C executables
• EPICS device support (NDS [1] driver + IOC)
• LabVIEW interface

2. Python bindings in the form of a class that reflect
the given functionality of 1)

3. Automatic test cases written by the test-plan
engineer using 2).

The NI-PXI6259 functionality that is supported in the
TB suite includes:

• Analog input/output (static) on a desired channel
• Analog input (waveform) on a trigger
• Analog output (waveform –

sine/saw/square/from file) on a trigger signal
• Configuration of the DIO port mask
• DIO diagnostics: port mask (0 – input, 1 –

output) and lines state (0 – low, 1 – high)
• Digital input/output (static) on a desired line
• Device reset

The underlying connection protocol is SSH and is
provided by the Python package Paramiko (the NDS
implementation utilizes the Python package CaChannel).

TESTBED BASE CLASS
The Testbed Python class (Fig.2, left hand-side)

provides a set of test methods to be executed on an SUT.
These methods can be extended for any DAQ board and
then used to quickly write automatic test scripts.

An example of such test case script showing three tests
for the NI 6259 DAQ board (Fig.2, right hand-side) is:

1. test_aio_static: generate static signal on AO0
(TB), acquire static signal from AI0 (SUT),
compare results.

2. test_dio_static: generate static signal on DO0
(TB), acquire static signal from DI0 (SUT),
compare results.

3. test_aio_wf: generate a sine wave on AO0 (TB) on
the trigger signal PFI1, acquire the waveform on
AI0 (SUT) on the trigger signal PFI1, compare
results.

Figure 1: TestBed chassis is attached to the system under test.

–

TCO303 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

150C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technologies

Figure 2: Python class diagram.

IMPLEMENTATIONS

C Executables
The functionality of a DAQ board can be supported by

providing the C executables. In this work we have used
the NI PXI-6259 Linux Device Driver [2], which provides
the support library API to be used for application
development.

NDS

If EPICS device support is available for the selected
DAQ, then you no longer have to deal with files (saving
and parsing waveforms from files, transferring files via
SSH, etc.), but with EPICS Channel Access [3] (CA) – a
protocol that provides remote access to records and fields
managed by IOC.

The process can be simplified if the device support is
written using NDS. NDS generalizes EPICS device
support for data acquisition and timing devices. It
provides sets of interfaces, solutions and best practices of
device integration for EPICS. In this case, the Python
code becomes identical for all DAQ cards. Which means
that the only thing you need to do is provide an automatic
test script (e.g., using the unittest2 Python package).

LabVIEW

Often, there is no Linux driver that supports the full
functionality of a DAQ board. NI DAQ cards, however,
come with the NI-DAQmx driver, that does support
everything. In this case, the developer can implement
something similar to NDS in LabVIEW, thus generalizing
data acquisition cards by running an IOC and exposing
NDS-like EPICS PVs to CA clients (including TestBed).

SUMMARY
• The PXI chassis, Embedded Controller and DAQ

board have been selected for the TB suite.
• Scientific Linux 6.3 and ESS CODAC v4.1 were

installed on the Embedded Controller.
• The CODAC pxi6259 example programs

(written in C), EPICS device support (NDS)
were modified to provide basic functionality –
DIO, AIO, triggers, reading/writing data from/to
files (PVs).

• The TestBed class was written in Python, and
wraps the C and NDS functionality of the NI-
PXI6259 DAQ board.

• The TestBed was tested on ITER CODAC v4.2
(Red Hat Enterprise Linux 6.3) and ITER
CODAC v4.1 (Scientific Linux 6.3).

• The resulting test framework makes it possible
for automatic tests to be executed with each
release of the CODAC control system, thus
reducing effort and ensuring complete
consistency and repeatability in the testing
protocol.

ACKNOWLEDGEMENT
This project has received funding from the European

Union’s Seventh Framework Programme for research,
technological development and demonstration under grant
agreement no 289485.

REFERENCES
[1] V. Isaev, “Nominal Data Acquisition Device Support

for EPICS”, Proc. ICALEPCS2013, TUPPC059,
http://jacow.org/.

[2] K. Meyer et al., “Design and implementation of
Linux drivers for National Instruments IEEE 1588
Timing and General I/O cards”, Proc.

ICALEPCS2013, THPPC056, http://jacow.org/.
[3] http://www.aps.anl.gov/epics/docs/ca.php

Proceedings of PCaPAC2014, Karlsruhe, Germany TCO303

Hardware Technologies

ISBN 978-3-95450-146-5

151 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

