
LAUNCHING THE FAIR TIMING SYSTEM WITH CRYRING
M. Kreider, J. Bai, R. Bär, D. Beck, A. Hahn, C. Prados, S. Rauch, W. W. Terpstra, M. Zweig

GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany

Abstract
During the past two years, significant progress has been

made on the development of the General Machine Timing
(GMT) system for the upcoming FAIR facility at GSI. The
primary features are time-synchronization of 2000-3000
nodes using the White Rabbit Precision Time Protocol (WR-
PTP), distribution of International Atomic Time (TAI) times-
tamps and synchronized command and control of FAIR con-
trol system equipment.

A White Rabbit network has been set up connecting parts
of the existing facility. A next generation of the Timing Mas-
ter has been developed. Timing Receiver nodes in the form
factors Scalable Control Unit (standard front-end controller
for FAIR), VME, PCIe and standalone have been developed.
CRYRING is the first machine on the GSI/FAIR campus
to be operated with this new timing system and serves as a
test-ground for the complete control system. Installation of
equipment starts in late autumn 2014 followed by commis-
sioning of equipment in winter.

INTRODUCTION
The primary task of the General Machine Timing (GMT)

system is the hard real-time control of the GSI and FAIR
accelerator complex with sub-ns precision [1]. This is a two-
step process. First, the Settings Management [2] distributes
multiple settings to concerned Front-End Computers (FECs)
via the normal network of the accelerator. Activities1 are
prepared by the Front-End Software FESA [3]. Second, the
GMT generates on-time actions at the FECs. Such an action
triggers a prepared activity at the FEC and provides an index
referencing one of the preloaded settings.
The fundamental idea behind the GMT is the concept

of time-based control. The distribution of information and
timely execution of activities are decoupled. As a prerequi-
site, all nodes of the GMT share a common notion of time
provided byWR-PTP [4] via the dedicated White Rabbit net-
work (timing network). The central component of the GMT
is the Data Master (DM) [5]. At some time the DM receives
an (updated) schedule recipe for the operation of the facility
from the settings managements. This recipe only contains
indices to and time intervals between actions. Based on
this recipe, the DM controls the facility in hard real-time.
This is again a two-step process. First, the DM broadcasts
timing messages including the indices, but with absolute
execution time stamps, via the timing network to the Tim-
ing Receivers (TR) embedded in the FECs. The messages
must be distributed with an upper bound latency. Second,
messages are received by the TRs where they are filtered.
Relevant messages remain pending until the specified execu-

1 Example: Ramping of a magnet.

tion time when the TR performs the action. Depending on
the configuration of the TR, such an action could be digital
signal generation, complex activity such as ramping a radio-
frequency system, or signaling an event to the front-end
software via an interrupt request (IRQ).
In 2014 the primary features have been implemented in

such a way that the GMT and other components of the FAIR
control system can be used coherently for the control of a real
machine like CRYRING. This synchrotron has in the mean-
time moved from its original site in Stockholm to GSI and is
presently installed in a refurbished cave behind the existing
Experimental Storage Ring (ESR). While the infrastructure
for the installation of the control system is presently being
completed, the GMT components relevant for the recommis-
sioning of CRYRING have been implemented and tested.
This paper reports on the on-going work and summarizes
the present situation.

ASTERISK
For the nodes of the GMT, the timing team at GSI sup-

ports a variety of hardware types and functionality. The
interfaces of the GMT provide a common “look and feel”
to the users, hiding the complexity and differences between
the form factors to a large extent. Although some features
(e.g. a display) may not exist on all form factors, common
functionality must be presented identically at the interfaces.
To guarantee these requirements, the timing team builds

releases. Such a release includes hardware, gateware (FPGA
code), firmware (embedded CPU code) as well as software
(host system code) in a consistent way. The first version,
named Asterisk, has been released in July 2014. It includes
all features of the GMT required for the next milestones of
the whole FAIR control system.

Hardware
Asterisk includes four form factors. The Scalable Con-

trol Unit (SCU) is the standard FEC for the FAIR control
system and has been developed by the hardware section of
the control system department [6]. Three other form fac-
tors have been developed by the department of Experiment
Electronics and are intended for usage by the department of
Beam Instrumentation as well as Data AcQuisition (DAQ)
systems of FAIR experiments. The most important one is
the PCIe module PEXARIA5, since this module represents
the reference implementation based on an ARRIA V FPGA
for all form factors provided through the GSI timing team.
The two remaining modules, the VME board VETAR and
the standalone form factor EXPLODER are still based on
ARRIA II FPGAs.

TCO304 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

152C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technologies



Gateware
Gateware is synthesized Hardware Description Language

(VHDL) code for Field Programmable Gate Arrays (FPGAs).
For the GMT, the gateware is based on a Wishbone System-
on-Chip architecture [7]. This way, the functionality can be
clearly separated and implemented by dedicated Wishbone
master or slave devices attached to a hierarchy of several
Wishbone crossbars. Each Wishbone device is identified by
vendor ID, device ID as well as major and minor revision
required for the implementation of a Self-Describing Bus
(SDB) record. The connection to host bus system or Ethernet
are provided by Wishbone masters.
Typical components addressed by users would be: A

Timestamp Latch Unit (TLU) allows timestamping of incom-
ing digital signals with 1 ns precision. An Event-Condition-
Action (ECA) unit filters incoming timing messages [6]:
Relevant messages are transferred to so-called action chan-
nels, where they are sorted according their execution time [8].
On-time, the ECA spits out the message data with a granu-
larity of 8 ns to Receiving Components (RC), that are also
implemented in VHDL. Examples of RCs are a message
queue required for IRQ handling to the host system, or Gen-
eral Purpose IO (GPIO) that allows output of digital signals
with a 1 ns granularity. Of course, the gateware includes the
WR-PTP core required for time synchronization.

An important development has been the implementation
of an on-chip CPU cluster of Lattice Micro 32 (LM32) soft-
cores [9]. The cluster is connected to the Wishbone bus
and implements shared memory and Message Signaled In-
terrupts (MSI) for synchronization.

Software
The main software components within Asterisk include

a kernel driver specific for each host bus system, a generic
Wishbone kernel driver and the userland Etherbone [10]
API. This is sufficient to provide transparent access to the
on-chip Wishbone devices from userspace. The supported
interfaces are PCIe, VME, USB and UDP/Ethernet. This is
complemented by software tools and libraries for specific
Wishbone devices like a flash controller, the WR-PTP core
or the ECA.

Data Master
The Data Master is in charge of command and control

of the FAIR accelerator complex in hard real-time. It is
implemented as a hybrid system. A high-end industrial PC
serves as an interface to the settings management and other
components of the control system. A PEXARIA PCIe mod-
ule serves as the main hardware component. Its key feature
is a FPGA hosting a multi-core cluster of LM32 softcores.
Distinct processes on these cores are each in charge of real-
time generation of timing messages of a particular part of
the accelerator complex. A dedicated tool chain allows con-
figuration of the DM with a schedule recipe in XML format
and control of the operational state. Only one instance of

the Data Master will be used for CRYRING and later-on for
FAIR. For more details see [5].

Timing Network
The timing network is composed of commercial White

Rabbit switches. For the start of CRYRING, only top down
timing messages from the Data Master are allowed next to
WR-PTP. These messages are forwarded by the switches to
the nodes via cut-through routing. As their is no other traffic,
the latency of a switch is on the order of a few µs.

Timing Receiver Nodes
Asterisk supports four TR types. EXPLODER is a stan-

dalone TR for digital I/O and allows configuration via USB
or via the timing network. VETAR and PEXARIA are VME
and PCIe modules. They can be configured via their host
system bus and support IRQs. The most important for equip-
ment control is the SCU. This is an embedded system and
operated in custom crates of 3U height. It includes a SCU
carrier board with on board TR, dedicated piggy boards,
and a Com-Express module hosting the front-end software.
As a very important feature, it provides a connection to the
slave modules in the same crate via the so-called SCU-bus
on the backplane. Slave modules implement I/O to external
hardware like power supplies or radio-frequency systems.

INTEGRATION WITH THE OVERALL
CONTROL SYSTEM

CRYRING
CRYRING is the first system that requires an integration

of all components of the FAIR control system. Towards the
application layer and settings management, the Data Master
has implemented a prototype FESA class.
At the TRs, a first version of an interface towards FESA

has been implemented. Frankly speaking, this is only a hack
in FESA core. However, it already allows configuring the
TR and to receive IRQ and the data associated to a timed
action of the ECA. As a demonstration, a FESA class is
implemented which, first, receives all ECA actions received
via the host bus system and, second, publishes relevant infor-
mation via the Controls MiddleWare (CMW) [11]. This in-
formation about actions triggered by the GMT is distributed
and available to all applications of the control system.
The department of Beam Instrumentation has success-

fully integrated TRs provided by the GMT into PCIe and
VME systems. Three FESA classes have been implemented
demonstrating the integration of GMT, FESA and control
system equipment in FECs [12].

INTEGRATION WITH DAQ SYSTEMS
The timing receivers developed for the GMT have two

features that are of interest for DAQ systems.
The timestamp latch unit (TLU) allows timestamping with

a granularity of 1 ns. This feature is of interest for times-
tamping events or even detector signals. This can be applied

Proceedings of PCaPAC2014, Karlsruhe, Germany TCO304

Hardware Technologies

ISBN 978-3-95450-146-5

153 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



to DAQ systems with high trigger rates exceeding 100 kHz.
Long term tests over weeks have been passed successfully.
This demonstrates the robustness of software, drivers and
SoC Wishbone architecture of the TR.

Another feature is clock and timestamp fan-out provided
by the form factors PCIe, VME and standalone. A 200MHz
clock is phase locked between all TRs connected to the
timing network. A 100 kHz clock is phase locked to the
200MHz clock and provides encoded timestamps that are
sent in between the 100 kHz clock ticks. Due to the dis-
tributed nature of the GMT, this feature allows not only for
timestamping but, when combined with dedicated electron-
ics, for the measurement of time differences with a precision
in the two digit picoseconds range. As an example, this
can be used for Time-of-Flight measurements for particle
identification.
For more details on the integration of GMT and DAQ

please refer to [13].

ISSUES
Although the integration of DAQ and GMT systems shows

high stability even on long term operation, this picture
changes as soon as additional Ethernet traffic is allowed
in the timing network. A loss of White Rabbit lock has also
been observed by other users of White Rabbit elsewhere and
has been investigated by our colleagues from CERN. It has
been reported, that this issue is improved with a new release
of the switches software and gateware [14].
The present implementation of front-end software typi-

cally claims a resource of the TR exclusively. This results
in a failure to share unique resources like IRQs between
two or more userland application. Along the same line, ac-
cess to digital I/O on TRs or access to the SCU backplane
bus can effectively not be shared amongst different applica-
tions. These and other issues triggered the development of a
software framework, codenamed SaftLib, which is presently
being defined.
Some important features of the GMT are not yet imple-

mented. Examples are robustness of timing messages, re-
dundancy of the timing network and priority encoding in
White Rabbit switches.

CONCLUSION AND OUTLOOK
Important features of the GMT have been implemented. A

Data Master exists. The SCU is integrated. TRs in the form
factor PCIe and VME have been developed and integrated in
the FECs of the Beam Instrumentation group as well as DAQ
systems. The GMT is ready for installation and integration
with CRYRING equipment will be started once the required
infrastructure, such as power, racks, network and cable trays,
has been installed at CRYRING.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of the

CERN White Rabbit Team, the driving force behind the
development of White Rabbit PTP. Furthermore the authors
would like to thank our GSI colleagues from the depart-
ments of Beam Instrumentation, Experiment Electronics and
Radio-Frequency for their help. We thank Peter Moritz (†)
and Sabine Voltz (†).

REFERENCES
[1] D. Beck et al., “The NewWhite Rabbit Based Timing System

for the FAIR Facility”, FRIA01, Proceedings of PCaPAC
(2012) Kolkata, India.

[2] J. Fitzek et al., “Settings Management within the FAIR
Control System Based on the CERN LSA Framework”,
WEPL008, Proceedings of PCaPAC (2010) Saskatoon,
Canada.

[3] Al. Schwinn et al., “FESA3 - The New Front-End Software
Framework at CERN and the FAIR Facility”, WECOAA03,
Proceedings of PCaPAC (2010) Saskatoon, Canada.

[4] J. Serrano et al., “The White Rabbit Project”, TUC004, Pro-
ceedings of ICALEPCS (2009) Kobe, Japan, 2009.

[5] M. Kreider et al., “New developments on the FAIR Timing
Master”, FPO022, These Proceedings, PCaPAC (2014) Karl-
sruhe, Germany.

[6] S. Rauch et al., “Facility Wide-Synchronization of Standard
FAIR Equipment Controllers”, WEPD48, Proceedings of
PCaPAC (2012) Kolkata, India.

[7] Wishbone B4, specification: http://cdn.opencores.
org/downloads/wbspec_b4.pdf

[8] W.W. Tersptra et al., “Inexpensive Scheduling in FPGAs”,
TCO301, These Proceedings, PCaPAC (2014) Karlsruhe, Ger-
many.

[9] W.W. Terpstra, “The Case For Soft-CPUs in Accelerator Con-
trol Systems”, THCHMUST05, Proceedings of ICALEPCS
(2011) Grenoble, France.

[10] M. Kreider et al., “Open Borders for System-on-a-Chip Buses:
AWire Format for Connecting Large Physics Controls”, Phys.
Rev. ST Accel. Beams 15 (2012) 082801.

[11] V. Rapp et al., “Controls Middleware for FAIR”, WCO102,
These Proceedings, PCaPAC (2014) Karlsruhe, Germany.

[12] H. Bräuning, GSI (2014) private communication.

[13] N. Kurz et al., “White Rabbit Applications for FAIR Experi-
ments”, GSI Scientific Report 2013 (2014) to be published.

[14] Eighth White Rabbit Workshop, Geneva, 2014:
http://www.ohwr.org/projects/white-rabbit/
wiki/Oct2014Meeting

TCO304 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

154C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technologies


