
DRIVERS AND SOFTWARE FOR MicroTCA.4
∗

M. Killenberg†, L. Petrosyan, C. Schmidt,
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

S. Marsching, aquenos GmbH, 76532 Baden-Baden, Germany
M. Mehle, T. Sušnik, K. Žagar, Cosylab d.d., SI-1000 Ljubljana, Slovenia

A. Piotrowski, FastLogic Sp. z o.o., 90-441 Łódź, Poland
T. Kozak, P. Prędki, J. Wychowaniak, Łódź University of Technology, 90-924 Łódź, Poland

Abstract

The MicroTCA.4 crate standard provides a powerful elec-
tronic platform for digital and analogue signal processing.
Besides excellent hardware modularity, it is the software re-
liability and flexibility as well as the easy integration into ex-
isting software infrastructures that will drive the widespread
adoption of the new standard. The DESY MicroTCA.4 User
Tool Kit (MTCA4U) comprises three main components:
A Linux device driver, a C++ API for accessing the Mi-
croTCA.4 devices and a control system interface layer. The
main focus of the tool kit is flexibility to enable fast devel-
opment. The universal, expandable PCIexpress driver and
a register mapping library allow out of the box operation
of all MicroTCA.4 devices which carry firmware developed
with the DESY FPGA board support package. The control
system adapter provides callback functions to decouple the
application code from the middleware layer. Like this the
same business logic can be used at different facilities without
further modification.

INTRODUCTION

The MicroTCA.4 crate standard [1,2] provides a platform
for digital and analogue data processing in one crate. It is
geared towards data acquisition and control applications, pro-
viding a backplane with high-speed point to point serial links,
a common high-speed data bus (PCIexpress in this case) as
well as clock and trigger lines. In typical control applications
large amounts of data have to be digitised and processed in
real-time on the front end CPU of the MicroTCA.4 crate.

MTCA4U—The DESY MicroTCA.4 User Tool Kit

The main goal of the DESY MicroTCA.4 User Tool Kit
(MTCA4U) [3] is to provide a library which allows efficient,
yet easy to use access to the MicroTCA.4 hardware in C++.
In addition it features an adapter layer to facilitate interfacing
to control system and middleware software. The design
layout of the tool kit is depicted in Fig. 1.

THE LINUX KERNEL MODULE

The Linux kernel module (driver) provides access to the
MicroTCA.4 devices via the PCIexpress bus. As the basic
access to the PCIexpress address space is not device de-
pendent, we follow the concept of a universal driver for all

∗ This work is supported by the Helmholtz Validation Fund HVF-0016
“MTCA.4 for Industry”.

† martin.killenberg@desy.de

MicroTCA.4 boards. The kernel module uses the Linux De-
vice Driver Model which allows module stacking, so that the
driver can be split into two layers: A generic part provides all
common structures and implements access to the PCIexpress
I/O address space. The device specific part implements only
firmware-dependent features like Direct Memory Access
(DMA), and uses all basic functionality of the generic part.
For all devices developed at DESY the firmware will provide
a standard register set and the same DMA mechanism, which
permits to use a common driver for all boards. For devices
from other vendors the generic part enables out-of-the-box
access to the basic features, which can be complemented
by writing a driver module based on the generic driver part.
Like this the interface in MTCA4U does not change and the
new device is easy to integrate into existing software.

Improved DMA Performance

Latest developments have focused on the improvement of
the DMA performance. For a universal driver it is important
to keep the interfaces to the user space and the firmware sim-
ple. In addition, the implementation in firmware should not
be too complicated. The available firmware uses a simple
DMA core which allows to transfer one contiguous block
of memory from the MicroTCA.4 board into one contigu-
ous block of the memory of the CPU. After the transfer
is finished, the CPU is notified via a PCIexpress interrupt.
Memory allocated in user space is not contiguous in Linux,
but memory allocated in the Kernel address space can be
contiguous.

Our original DMA implementation was to allocate one big
kernel buffer, perform the DMA transfer into this buffer and
afterwards perform a copy to the user space (see Fig. 2 A).
Performance measurements showed that the copy to user
space took about 50 % of the time of the DMA transfer
(PCIexpress Gen. 1 on an Intel Core i7 CPU), which was a
significant performance penalty.

The improved version tries to minimise the time until the
copy to the user space can start (copy latency) and already
executes part of the copying while the rest of the data is still
being transferred via DMA. For this it performs multiple
DMA transfers of a smaller block size instead of transferring
everything at once (B and C in Fig. 2). As every DMA
transfer ends with an interrupt, this causes additional load
on the system and an additional latency. For this reasons the
number of DMA transfers should be limited. Version B in
Fig. 2 for instance finishes later than version C, although the

Proceedings of PCaPAC2014, Karlsruhe, Germany WCO101

Control Systems

ISBN 978-3-95450-146-5

1 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Linux
Driver

/dev/mtca_slot0

Register
Map

C++ Device API

Qt Hardware Monitor LLRF Library
C++ LLRF Application

DOOCS
LLRF DOOCS Server

EPICS
LLRF EPICS Server

TANGO
LLRF TANGO Server

Open Source
- Driver
- Base API
- Hardware Monitor
- Control System Tools

Closed Source (example)
- Low Level Radio Frequency (LLRF)
 control library for the accelerator

Servers
- Control system dependent

Board Support Package

Mapping
Library

YOUR Control System
YOUR LLRF Server

Firmware

Control System Adapter

Figure 1: The design concept of the MicroTCA.4 User Tool Kit MTCA4U.

IntDMA Copy to User

Copy Latency
A

B

Copy Latency

Copy Latency

C

Time

Figure 2: Visualisation of the time required to perform a DMA transfer for different methods.

latency until the first copy to user starts is much shorter. For
our tests with a single PCIexpress card a number of about 10
buffers showed the best performance. The last copy to user,
which is started after the last DMA transfer, takes about
5 % of the total time required for the DMA transfer, and
the total interrupt latency is still almost negligible. This is
a significant improvement compared to 50 % performance
penalty of the original implementation.

THE C++ DEVICE API

The basic high level API provides C++ classes which
allow access to all the functionality provided by the kernel
module without requiring the user to have knowledge about
implementation details like IOCTL sequences. The interface
is that of a generic, address based device.

A main component of the C++ library is the register name
mapping. With evolving firmware the address of a register
can change in the PCIexpress I/O address space. To make
the user code robust against these changes, the registers can
be accessed by their name instead of using the address di-
rectly, which also improves the code readability. In addition

the mapping file can contain information for automatic data
type conversion, for instance fixed point to floating point or
signed 24 bit integer to system types. The required mapping
file is automatically generated by the Board Support Pack-
age together with the firmware. Performance overhead due
to repetitive table look-up is avoided by the use of register
accessor objects, which cache the address and provide fast
access to the hardware. Currently the mapping file imple-
mentation is being changed from plain text to XML. This
allows for more flexibility and enables new features like
composing the firmware out of precompiled blocks.

GRAPHICAL USER INTERFACE

The mapping file, containing information of all the PCI-
express registers implemented in the firmware, allows to
display this information in a graphical user interface (GUI).
The Qt Hardware Monitor lists all registers and their proper-
ties, and permits the user to interactively display and modify
their content. As the mapping file is automatically gener-
ated together with the firmware, this tool can be used for
debugging and prototyping immediately after the firmware

WCO101 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

2C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems

has been deployed. The hardware monitor is written us-
ing Qt [4], an open source, cross-platform user interface
framework which is available on all Linux platforms.

THE CONTROL SYSTEM ADAPTER

For larger control applications the different components
use a control system or a middleware layer to communicate
with each other. For this purpose the control system provides
data structures which are used inside the user code. This
causes a strong coupling of the code to the control system.

As it is expensive and time consuming to develop control
algorithms, it would be desirable to have the core applica-
tion portable between different control system. This brings
contradicting requirements: On one hand the application has
to communicate via the control system protocol and provide
functionality like logging and data history, on the other hand
it should be independent from the specific control system
implementation without reimplementing the functionality.

The approach in MTCA4U is the introduction of a control
system adapter layer, which should be as thin as possible.
The business logic, which is independent from the control
system, is only talking to the adapter and does not use the
control system directly. The adapter comprises two compo-
nents: A process variable adapter and a callback mechanism
to react on control system events.

The Process Variable Adapter

The process variable adapter is a wrapper around the ac-
tual control system specific instance of a variable. From
the point of view of the business logic the process variables
look like normal simple data types, or arrays of simple data
types. Each variable has accessor functions (getters and set-
ters). In addition to these methods, arrays will have iterators
and random access operators similar to the C++ std::array.
This allows to directly operate on the control system’s data
container without the need of an additional copy, which
improves the performance for large data structures.

In addition to the basic accessors, callback functions can
be registered which are executed when the variable content
changes. Like this the process can react on changes coming
from the control system. Apart from these functions, which
have a control system independent interface, no other control
system specific functionality is reflected by the interface of
the process variable adapter. This approach also has an
impact on the design of the application code: In principle
it has to be able to run without a control system attached.
The advantage here is that one can run it for testing with a
small, local script or GUI without the need to set up a control
system environment. In addition it simplifies unit testing.

Control System Callback Interface

There are tree ways how actions in the business logic are
called by or synchronised with the control system:

1. Synchronous actions with each read and write operation
of a process variable. This is implemented by the “on
set” and “on get” callback functions of the process
variable adapter.

2. Update functions which are triggered by the control
system. This can either be a periodic function or a
function triggered by an outside event, like a trigger
signal which is sent by the control system.

3. Synchronisation functions which are called within the
user code. This might be needed if the user code is
running its own thread which for instance might be
triggered by the hardware and the business logic has to
determine when the synchronisation is executed.

In the first two cases the timing is fully controlled by
the control system. In the third option the execution of the
synchronisation is triggered by the business logic, but it can
be blocked by the control system adapter if there is ongoing
communication.

For cases 2 and 3 all process variables are synchronised
within one function. The control system adapter provides
means to register these functions as callbacks and ensures
thread safety for the process variables which are used in the
function callbacks. Some control systems require a global
lock to be set before accessing a process variable, but these
implementation details are handled by the control system
adapter, resulting in control system independent business
logic.

CONCLUSIONS

The DESY MicroTCA.4 User Tool Kit MTCA4U is a
C++ library which allows convenient access to MicroTCA.4
boards via PCIexpress. It comprises a modular, expandable
Linux driver, an API with register name mapping and au-
tomatic type conversion, and a graphical user interface for
fast prototyping. A control system adapter is currently being
developed, which allows the application code to be inde-
pendent from the actual control system in use. This makes
the business logic portable between control systems with
minimal effort and allows a wider field of application for
software written using MTCA4U.

MTCA4U is published under the GNU General Public
License and available on DESY’s subversion server [3].

REFERENCES

[1] PICMG®, “Micro Telecommunications Computing Architec-
ture, MicroTCA.0 R1.0”, 2006

[2] PICMG®, “MicroTCA® Enhancements for Rear I/O and Pre-
cision Timing, MicroTCA.4 R1.0”, 2011/2012

[3] MTCA4U—The DESY MicroTCA.4 User Tool Kit, Subver-
sion Repository https://svnsrv.desy.de/public/mtca4u

[4] The Qt Project, http://qt-project.org/

Proceedings of PCaPAC2014, Karlsruhe, Germany WCO101

Control Systems

ISBN 978-3-95450-146-5

3 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

