
SARDANA – A PYTHON BASED SOFTWARE PACKAGE FOR BUILDING

SCIENTIFIC SCADA APPLICATIONS

Zbigniew Reszela, Guifre Cuni, David Fernandez-Carreiras, Jorg Klora [on leave], Carlos Pascual-
Izarra, CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain

 Tiago Coutinho, ESRF, Grenoble, France

Abstract
Sardana is a software suite for Supervision, Control and

Data Acquisition in scientific installations. It aims to
reduce cost and time of design, development and support
of the control and data acquisition systems[1]. Sardana,
thanks to the Taurus library[2], allows the user to build
modern and generic interfaces to the laboratory
instruments. It also delivers a flexible python based macro
environment, via its MacroServer, which allows custom
procedures to be plug in and provides a turnkey set of
standard macros e.g. generic scans. Thanks to the Device

Pool the heterogeneous hardware could be easily plug in
based on common and dynamic interfaces. The Sardana
development started at Alba, where it is extensively used
to operate all beamlines, the accelerators and auxiliary
laboratories. In the meantime, Sardana attracted interest
of other laboratories where it is used with success in
various configurations. An international community of
users and developers[3] was formed and it now maintains
the package. Modern data acquisition approaches guides
and stimulates current developments in Sardana. This
article describes how the Sardana community approaches
some of its challenging projects.

SARDANA AND ITS COMPONENTS

Sardana is a distributed control system based on the
client-server model. The communication protocol is
Tango[4]. Different Sardana configurations are possible
depending on the scale of the installation. As an example,
a small laboratory could have a single Sardana server
exporting one Device Pool and one MacroServer. If
needed, multiple Device Pool servers could be distributed
over different hosts. Configurations with many
MacroServer servers are also possible. Multiple Graphical
User Interface (GUI) and Command Line Interface (CLI)
clients can communicate with the Sardana system, at the
same time.

Device Pool

Scientific installations are characterized by multiple
and heterogeneous hardware. The particle accelerators
comprises power supplies, vacuum equipment, radio
frequency stations, insertion devices and many
diagnostics and actuators among others. The laboratories,
e.g. a synchrotron beamline, usually consists of even
more diverse instruments like, diffractometers,
monochromators and sophisticated detectors full of
moveable axes and experimental channels. These
laboratories frequently require to modify their
configuration depending on the experiment being
performed. Sardana interfaces all the equipments via the

Device Pool and its plugin controller classes. Sardana
elements could be classified by their types in three main
groups:

• moveables: physical motors e.g. stepper or servo
motors, piezo actuators and logical pseudo motors
e.g. the energy, composed translations

• experimental channels: counters and pseudo
counters; 0D – scalar values based on mathematical
operations e.g. averaging or integration of samples;
1D – one dimensional detectors e.g. Multi Channel
Analyzers, Position Sensitive Detectors; 2D – two
dimensional detectors e.g. CCD cameras

• other elements: communication channels,
enumerated scalars called I/O registers

The controllers group the Sardana elements, which are
organized and identified by the axis number. All these
elements are represented by TANGO devices, and could
be spread in many Device Pool servers or grouped in a
single one. The Device Pool optimizes common control
processes. The grouped acquisitions are handled by the
Measurement Group, which configures and synchronizes
the experimental channels. The grouped motions are
implemented inside the Pool and if the hardware allows
that, motion of all the axes can be started simultaneously
by one single command. The API of the controllers and
the programmed algorithms take into account all these
particularities so access to the hardware is optimized.

MacroServer

A basic requirement for the scientific SCADA system
is to provide a sequencer capable to plan and execute
experiment procedures. MacroServer, together with its
Doors, provide these and other functionalities (via Door
different client applications access the MacroServer
engine). The MacroServer allows the execution of
multiple procedures (called macros) sequentially or even
simultaneously if different Doors are used. A macro can
accept input parameters and return a result or produce
data, which might be interchanged between chained or
nested macro sequences. It is possible to interrupt the
sequence execution at any moment as well as temporarily
pause and resume it. Features for adding, editing and
browsing the available macros are accessible via the
MacroServer at runtime. Sardana provides a
miscellaneous set of standard macros. Their naming and
parameters often follow conventions adopted by SPEC[5]
what optimizes the users learning curve. Probably the
most useful and sophisticated macros are the generic, n-
dimensional scans. The scan process consist of data
acquisition of the involved experimental channels while
varying the scanning variable (typically a moveable

Proceedings of PCaPAC2014, Karlsruhe, Germany WCO206

Data Acquisition

ISBN 978-3-95450-146-5

25 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

object). Scans in Sardana are available in various modes:
step, hybrid and continuous, where distinct actions like
motion, data acquisition or data storage are synchronized
and optimized. Sardana allows the scan data to be stored
in many different formats. This process is handled by one
or more optional recorders. They receive the scan data
and the experiment metadata from the scanning macro
and despatch them to the destination in the correct format
e.g. a file, console output, a data post-processing program.

Taurus Based Human Machine Interfaces
Sardana client applications (CLI and GUIs) are

developed with the Taurus library. Taurus was originally
conceived for connecting client side applications to Tango
device servers using the PyTango library. For the GUI
part, Taurus is built on top of PyQt[6]. Taurus is designed
with a Model-View-Controller (MVC) architecture and
has currently transcended its Tango-centric origins by
accepting scheme plugins. A scheme plugin provides the
model objects for a certain source of data and/or of
controllable variables. Schemes exist for several hardware
access layers (Tango, Epics, SPEC) and even for
interacting with a Python interpreter. Each model object
has a unique URI based name and it can be transparently
used by the higher levels of the library. This makes it
possible to mix in one application variables from different
control systems, values retrieved from the archiving
systems or any other source of data.

Taurus comprises a complete set of widgets (forms,
plots, macro execution and experiment configuration
panels, etc.) which provide the View and Controller
components of the MVC and which assure a standardized
look-and-feel of the user interfaces. They are easy to
program thanks to the user-friendly API and are even
integrated in the standard graphical Qt designer. The
TaurusGUI and its configuration wizard allows the
creation of complete GUI applications with just few
clicks. The GUI is typically configured with a synoptic
view representing a number of instruments, and can be
managed with different perspectives. All these features
considerably speed up the application development
process (to the point that users often create ad-hoc
temporary GUIs to solve particular tasks).

Spock is a Command Line Interface built on IPython
and makes extensive use of Taurus as well. Its main
functionalities are macro execution and control of any
Sardana element. Spock provides context tab completion
and an easy access to the history of executed commands
which makes it user-friendly and efficient.

CURRENT & FUTURE DEVELOPMENTS

Testing Framework

Many enhancements are currently being evaluated and
developed. Some of them require refactoring of the
Sardana and Taurus core concepts, which increases the
risk of regression. The Sardana Testing Framework was
developed in first order to mitigate this risk. The

framework provides guidelines regarding test
organization, naming conventions and the required test
case documentation. It comprises a base test case and test
suite classes as well as tools to ease tests development.
From now on, many new developments follow the test
driven development process. As the next step, it is
planned to set up the continuous integration service,
which will enable the real benefits of the Sardana Testing
Framework.

Continuous Scans

The Generic Scan Framework was recently extended by
the continuous mode, however present solutions still lack
of generalization on various levels. The future scans must
provide transparency between the different
synchronization modes of the experimental channels and
external attributes involved in the acquisition process. The
precise timestamp distributed over the involved hardware
and hosts could be used for software triggering and data
timestamping. A new element type – trigger/gate and a
corresponding controller will be added to the Device
Pool. Their interfaces must be determined to allow
configurations of equidistant or arbitrary sequences of
events in time or distance domains. Modern devices could
deliver multiple functionalities e.g. one device could
control a moveable axis, generate trigger signal and
provide an experimental channel of the position
measurement. The current design of the controller concept
needs to be enhanced to allow handling elements of
different types by one controller class. Usually the
continuous scan requires the acquisition process to be
performed while the scanning variable changes with a
constant rate. In the case of the pseudomotors with non-
linear formulas this require control of the motion
trajectories of the involved physical motors. Current
implementation approximates this cases and maintains the
constant velocity of the physical motors.

Other Enhancements
A diffractometer is a common instrument in the

synchrotron beamlines and is available in various
geometries e.g. Eulerian 4-circle or 6-circle, kappa 4-
circle etc. Experiments involving diffractometers are
based on scans in reciprocal space, which require
complex diffraction calculations. A base diffractometer
controller class (psudomotor) uses the HKL library[7] and
encapsulates all the complex calculations. A set of
derived classes just defines the geometric specific
physical and pseudo motor roles. In addition, any
diffractometer instrument, could be controlled with the
specific Taurus based widgets e.g. diffractometer
alignment or hkl scan.

High speed and high resolution detectors and cameras
require advanced control and optimized image post
processing. The Lima library[8] fulfils these
requirements. It was used to develop an early version of a
2D experimental channel controller. Its functionalities
allow scans involving 2D experimental channels. Further

WCO206 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

26C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Acquisition

improvements are already planned e.g. to access the Lima
objects directly instead of accessing them via Tango or to
allow passing references to image data instead of the full
raw images.

While some laboratories (such as Alba) use Sardana
and Taurus as a complete scientific SCADA suite, other
users are interested in using some components integrated
in their running control system. The installation can be
tailored and/or extended to fit different needs. Taurus and
Sardana currently provides several extension points e.g.
schemes, domain specific widgets, core extensions,
macros, controllers, recorders, but these are implemented
in different ways. A generic plugin system is one of the
future goals which would not only make currently
mandatory dependencies optional, but would also
simplify and unify the extension of Taurus and Sardana.

SARDANA COMMUNITY

The origins of Sardana reach 2005, when early
decisions about the ALBA Control System were taken.
First the TANGO was chosen as the control system
framework for ALBA. Common requirements of the
beamlines sketched the first Sardana specification. The
development process started immediately, and the core of
the system was mostly maintained by one developer.
Sardana was successfully commissioned during the
installation and commissioning of the accelerators and
beamlines which was completed in 2012. It grew to a
mature product and other institutes, mainly synchrotrons,
selected it as their control system. Sardana is free and
open source (LGPL) which attracts many new users. The
big interest of current and potential users together with
many ongoing enhancement projects lead Alba to open
also the project management by pushing for the formation
of the Sardana Community in 2013. Sardana is currently
used in DESY – Germany, MaxIV – Sweden and Solaris
– Poland. These three institutes, together with Alba, form
the actual collaboration. To a lesser extend, Taurus is also
used at the ESRF and within Tango collaboration (by
most official and unofficial participants). All these
institutes actively participate in the community activities.
Commercial support is given by the Nexeya and the
Cosylab.

The first decision of the community was to formalize
discussion process about the proposals of improvements
and modifications. The Sardana Enhancement Proposal
(SEP) process was introduced, and up to now 12 SEPs
are defined (some of them already accepted). All of the
Sardana repositories, the core and the third-party macros
and controllers were migrated from SVN to GIT, which
fits better to Sardana Community profile. The code
contribution workflow, the branching model and naming
conventions were defined. In order to provide the highest
quality of the Sardana core code, all its contributions must
pass through an open and transparent public code review

and integration process. Another organizational change,
which is currently in progress, is the Taurus library
separation. Sardana and Taurus codes were isolated and
soon the Taurus code will be migrated to its own GIT
repository and project. Sardana is hosted on the
Souceforege platform and uses a number of offered tools
e.g. an issue tracker, mailing lists, wikis etc. They are
widely used by the Sardana Community (both users and
developers) in their daily life. The Sardana Workshop
meetings, often organized as satellites to the Tango
Meetings, take place once a year and the virtual
conferences are organized according to the needs.

The Sardana and Taurus release cycle includes two
official releases per year: in January and in July. The
latest installers, for Linux and Windows platforms, are
available to download from the PyPI repository or could
be installed directly with pip or easy_install. Sardana and
Taurus could also be installed directly from sources,
which could be obtained from their GIT repositories, with
the setuptools installation. Debian users have also access
to the official debian packages.

ACKNOWLEDGEMENT

Many people have worked in this project. This is a
work achieved with the effort of the whole ALBA
controls group. The ALBA scientists took part in the
specification refinement process, what has to be
recognized, together with the beam time offered for the
acceptance tests. Important contributions were received
from T. Nuñez and J. Kotanski from DESY, F. Picca from
Soleil and V. Valls, E. Taurel (who as the Tango expert
guided the initial steps of the Sardana developments), A.
Homs and V. Rey from the ESRF. The authors would also
like to thank the experts from other institutes, for their
valuable feedback and ideas, in particular to T. Kracht
from DESY, N. Leclerq from Soleil, D. Spruce and A.
Milan from MaxIV and P. Goryl and L. Żytniak from
Solaris.

REFERENCES

[1] T. Countinho et al. “Sardana, The Software for
Building SCADAs in Scientific Environments”,
ICALEPCS2011, Grenoble, WEAAUST01

[2] The Taurus library web page: http://www.taurus-
scada.org

[3] The Sardana project web page:
http://www.sf.net/projects/sardana

[4] TANGO web page: http://www.tango-controls.org
[5] SPEC web page: http://www.certif.com/spec.html
[6] The PyQt library web page:

http://www.riverbankcomputing.com/software/pyqt
[7] The HKL library web page: http://www.synchrotron-

soleil.fr/portal/page/portal/Instrumentation/Environne
mentInstrumental/hkl

[8] The Lima library web page:
http://lima.blissgarden.org

Proceedings of PCaPAC2014, Karlsruhe, Germany WCO206

Data Acquisition

ISBN 978-3-95450-146-5

27 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

