
IMPLEMENTATION OF THE DISTRIBUTED ALARM SYSTEM FOR THE

PARTICLE ACCELERATOR FAIR USING AN ACTOR CONCURRENT

PROGRAMMING MODEL AND THE CONCEPT OF AN AGENT.

D. Kumar, G. Gašperšič, M. Plesko, Cosylab, Ljubljana, Slovenia

R. Huhmann, S. Krepp, GSI, Darmstadt, Germany

Abstract
The Alarm System is a software system that enables

operators to identify and locate conditions which indicate
hardware and software components malfunctioning or
nearby malfunctioning. The FAIR Alarm System is being
constructed as a Slovenian in-kind contribution to the
FAIR project. The purpose of this paper is to show how to
simplify the development of a highly available distributed
alarm system for the particle accelerator FAIR using a
concurrent programming model based on actors and on
the concept of an agent. The agents separate the
distribution of the alarm status signals to the clients from
the processing of the alarm signals. The logical
communication between an alarm client and an agent is
between an actor in the alarm client and an actor in the
agent. These two remote actors exchange messages
through Java MOM. The following will be addressed: the
tree-like hierarchy of actors that are used for the fault
tolerance communication between an agent and an alarm
client; a custom message protocol used by the actors; the
message system and corresponding technical
implications; and details of software components that
were developed using the Akka programming library.

INTRODUCTION

The FAIR Alarm System is composed of three major
layers: a generation layer, a processing layer and a client
layer. The connecting glue between the layers is the
messaging system which allows the layers to
communicate by passing messages into each other’s
queues and topics.

The Generation Layer
The alarm generators are the components that

raise/lower alarm signals which are transported to the
processing layer through a Java Message Oriented
Middleware. The main purpose of the generators is to
produce the alarm signals containing an alarm
identification and state of the alarm that can be active or
inactive. They are also responsible for handling the fast
alarm oscillations. The alarm generators produce life-

cycle messages notifying the processing layer about their
health. The alarm generators must be registered with the
processing layer before the alarm signals can be sent. This
gives the processing layer a chance to prepare the
environment for alarm generator monitoring and alarm

signal receiving. During the registration process the

processing layer also checks that the alarm identifications

are known to the system. If they are not known, the

processing layer creates a default configuration for the

unknown alarms.

The Processing Layer
The core of the alarm system is the alarm processor

which is responsible for alarm signal processing and
dispatching of the processed alarm signals to the client
layer via an agent. The alarm processor also monitors the
alarm sources. The alarm signal processing includes:
matching the alarm signal with its configuration, updating
the alarm state, alarm masking, and alarm archiving. The

alarm processors are stateless and session-less, working in

groups to share the load of the alarm processing.

Processed alarm signals are not dispatched directly to the

client layer but are sent to the agents which have active

client sessions. The client layer accesses the alarm system

only through an agent by opening a client session. All

client requests are handled by the agents. The agent is

responsible for handling alarm reduction, subscribing and

filtering alarm state changes, acknowledgement of the

alarms, sending filtered alarm state changes to the

subscribed clients, and searching the alarm state and

alarm archive.

The Client Layer

There are many types of alarm clients: the alarm

monitoring viewer showing the state of the alarms, the

alarm archive browser displaying the alarm history from a

selected time range, the alarm configuration editor which

issues CRUD operations on the alarm configuration.

Common to all alarm clients is that they access the alarm

system through an Alarm Client API. The alarm clients

open many concurrent and independent sessions through

which they issue requests to the alarm system and receive

replies and alarm state changes. When a session is opened

in the client layer, another session is also created on the

agent. A hierarchy of actors [1] is created on both layers

establishing a logical communication channel between a

client session actor and an agent session actor. The

physical communication is done through the actor

hierarchy where individual actors take different roles:

session management, session supervision, service worker,

JMS message producer, and JMS message consumer.

WPO029 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

102C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems

The Technology
The alarm generator is written in Java SE 7 and C++.

The native version of the generator works under Linux

and Windows using a Boost portable C++ source library

[2] and ZeroMQ [3] for a networking and concurrency

framework. The underlying messaging system is

ActiveMQ [4] in a “shared file system master slave” for a

fail-over configuration. A custom ActiveMQ plugin was

implemented bridging ZeroMQ and JMS messages. The

alarm processor and the agent are written in Java SE 7

using the Spring framework [5], Bitronix standalone

transaction manager for the distributed transactions [6],

and JPA for the management of relational data. No

application server is needed to run the alarm system.

The alarm processors work in a cluster using Hazelcast

[7], an In-Memory Data Grid. The Alarm Client API is

written in Java SE 7 and uses the Akka library [8] for the

actor abstraction implementation in the client and

processing layer. All layers of the alarm system use

custom protocol messages encoded with Google Protocol

Buffers [9].

ACTORS AND AGENTS

As already mentioned, there are two subsystems in the

processing layer. The core task of the alarm signal

processing and generator monitoring is assigned to one or

more alarm processors running in a cluster. The task of

managing the client layer is done by the agents. The

window into the alarm system from the perspective of a

client is a session in the Alarm Client API subsystem.

While the session is being established on the client layer,

another linking session is also opened in the processing

layer on the agent. These two sessions communicate with

each other through a logical communication channel

exchanging regular and life-cycle messages. If the client

session detects that the agent session is not responding, it

will reregister with another agent and transfer its state to

it. The applications using the Alarm Client API will not

notice that the session was re-established on a different

agent. The application using the Alarm Client API can

open many sessions. These sessions are fully independent

from each other, running concurrently with their own

alarm subscriptions, their own event listeners and alarm

reduction rules settings.

To ease the development of concurrent and fault-

tolerant alarm clients and agents, we replaced the

traditional model of shared state concurrency with the

Actor Model, thus avoiding the pitfalls of controlling and

manipulating the shared state with locks and threads.

In the Actor Model, all objects are modelled as

independent, computational entities that only respond to

the messages received. There is no shared state between

actors. Actors change their state only when they receive a

stimulus in the form of a message [10].

Error detection is an essential component of fault

tolerance. That is, if you know an error has occurred, you

might be able to tolerate it by replacing the offending

component, using an alternative means of computation, or

raising an exception [11].

Each actor that performs a task is associated with a

supervisor actor which monitors its actors for faults. If an

error occurs in the supervised actor, the supervisor will

initiate some error recovery procedure. This error

recovery can restart or resume the subordinate actor,

terminate it, or escalate the failure to its own supervisor

which has the exact same options regarding the error

handling. The supervisors and worker actors thus form a

supervisor hierarchy. In our case, a session in the client

layer is implemented as an actor that belongs to a

hierarchy of supervisors and supporting actors that enable

the session actor to communicate with its counterpart

session actor on the processing layer. The same holds true

for the session actor on the processing layer. It too

belongs to a supervisor hierarchy with the supporting

actors that enable communications with the client layer

and service actors that execute requests on behalf of the

alarm clients.

Figure 1 shows the outline of the alarm supervisor

hierarchy in the client and processing layer and, more

importantly, the roles that actors play to establish

different types of communication channels between the

client and the agent.

Figure 1: The Alarm Supervisor Hierarchy.

THE AGENT SUPERVISOR HIERARHY

The agent supervisor hierarchy is shown in Fig. 2 and

has a root actor, AlarmAgentActor, which is responsible

for bootstrapping the hierarchy. In the tree hierarchy we

have three main branches of actors. The branch holding

the AlarmAgentConsumerSupervisor and its supporting

actors is responsible for receiving the register and

unregister client protocol messages and alarm state

changes from the alarm processors.

Proceedings of PCaPAC2014, Karlsruhe, Germany WPO029

Control Systems

ISBN 978-3-95450-146-5

103 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 2: The Agent Supervisor Hierarchy.

 The register protocol message will create a new agent

session actor in the middle branch of the tree hierarchy.

The newly created AlarmAgentSessionActor bootstraps

its own sub-hierarchy of supporting actors. The session

actor pushes all of its protocol messages, self-generated or

received through the AlarmAgentConsumerSupervisor, to

the AlarmAgentSupervisorRouter. This actor then routes

the messages to the ServiceSupervisor where the client

requests are handled by its task actors. The

ConsumerActor in the session actor sub-hierarchy is

responsible for receiving the client protocol messages for

that session. These messages are routed to the session

service supervisor by the AlarmAgentSupervisorRouter.

The session service sub-hierarchy has one supervisor

(ServiceSupervisor) and many task actors. The task actor

HeartBeatActor is responsible for the session life-cycle

management. The SubscriptionActor will filter the alarm

state changes, the AlarmAgentReductionServiceActor

reduces the alarms. All messages that are produced by the

task actors are sent to the client layer through the

ProducerActors. Lastly, we have the service layer of the

agent represented by the AlarmAgentServiceSupervisor

where we have all the services that are used by the session

actors.

CONCLUSION
Implementing a distributed and a fault tolerant system

is never an easy task. To simplify the development of a

distributed and a fault tolerant alarm client layer and

processing layer we avoided using the shared state

concurrency model and went with the actor model. The

system was made fault tolerant by organizing the actors

into a supervisor hierarchy containing the actor tasks and

the supervisor actors responsible for fault monitoring and

error recovery [11]. The alarm supervisor hierarchies

were also built and modelled in the simulation package

AnyLogic 6 [12] where we used agent based modelling.

The results we obtained from the simulation were used to

prove that the non-functional requirements of the FAIR

Alarm System were satisfied.

REFERENCES
[1] Wikipedia website:

http://en.wikipedia.org/wiki/Actor_model

[2] Boost website: http://www.boost.org

[3] ZeroMQ website: http://zeromq.org

[4] ActiveMQ website: http://activemq.apache.org

[5] Spring framework website:

http://projects.spring.io/spring-framework

[6] Bitronix website:

http://docs.codehaus.org/display/BTM/Home

[7] Hazelcast website: http://hazelcast.org

[8] Akka website: http://akka.io

[9] Google Protocol Buffers website:

https://developers.google.com/protocol-buffers

[10] M. K. Gupta, Akka Essentials, ISBN: 978-1-84951-

828-4, Packt Publishing, Birmingham, UK (2012),

pp. 11.
[11] J. Armstrong, “Making reliable distributed systems

in the presence of software errors”, Doctoral

Dissertation, The Royal Institute of Technology,

2003, pp. 115-127.

[12] AnyLogic website: http://www.anylogic.com

WPO029 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

104C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems

