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Abstract
We are designing a Laser Electron Storage Ring (LESR)

for Tsinghua Thomson scattering X-ray source (TTX). A
very compact LESR is designed to increase the average flux
of the generated X-ray photons through the way of increas-
ing the repetition frequency of scattering. Considering to
reduce the lengths and the number of the magnets is nec-
essary in designing a small ring. However, we find that the
nonlinear effects of dipole field become significant when
the bending radii of the dipole magnets are small. In this
paper, we first present the baseline design of the LESR for
TTX. Both analytical analysis and simulation are carried
out to study the particles’ behavior around the third-order
systematic resonance line 3νx = 4. The analytical results
of the resonance strengths are found to agree well with re-
sults from numerical particle tracking.

INTRODUCTION
In the inverse Compton scattering (ICS) process, energy

can be transferred from high energy electrons to low energy
photons. Higher energy photons can be therefore gener-
ated, e.g., the head-on collision between 50 MeV electrons
and 800 nm laser pulses can produce hard X-ray photons
up to about 59 keV. However, the cross section of ICS is
small [1] which is a limitation of this kind of X-ray source.
To increase the flux of X-ray photons, Huang and Ruth pro-
posed to use a compact ring for storing electron beams and
an optical cavity for storing the laser pulses [2]. In this
scheme, the scattering happens every turn. The repetition
frequency of the interaction between electrons and laser
is determined by the revolution frequency of the electron
beam in the ring, of the order of tens of MHz.
Currently, TTX [3] consists of an S-band photocathode

RF gun, an S-band 3 m linac, and a TW laser system. We
propose a LESR in order to extend the capability of TTX. A
four-mirror Fabry-Perot cavity is designed for TTX-LESR
to store laser pulses inside [4]. In this paper, we focus on
the study of the ring with the circumference of 4.8 m, con-
sisting of 4 dipoles and 2 quadrupole magnets. The nonlin-
ear effects induced by dipole field are studied based on this
lattice. We organize this paper as follows. First, we show
the baseline design of this 4.8 m ring. The basic parameters
are also shown in this section. Then, we carry out the study
of particles’ motion influenced by the 3νx = 4 resonance.
The existence of nonlinearity of dipole field is proved by
the derivation. Strong evidence is also observed in the sim-
ulation. The discussion of the study is given at the end of
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this paper.

BASELINE DESIGN OF THE RING
Four dipoles with nonzero edge angles make up the basic

lattice of the TTX-ring. Horizontal focusing is provided by
the main body of the dipoles and vertical focusing comes
from the edge angles of them. The length of each dipole
is 0.4 m, corresponding to the bending radius 0.2546 m.
Two quadrupoles are located at the centers of the two long
straight sections. The optics of baseline design is shown
in Figure 1 [5]. In the baseline design, the edge angles at
both the entry and the exit of each dipole magnet are 37◦.
The vertical gap of the dipole magnets is chosen as 2.54
cm. Only the first order fringe field effect is included via
K. L. Brown’s theory. The FINT parameter is 0.9 in the
calculation. The quadrupole focusing strength K1 is 30
m−2 while the length of each quadrupole is 0.1 m.
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Figure 1: The beta functions and dispersion function in the
baseline design of the 4.8 m ring.

The betatron tunes in the baseline design are νx = 1.21
and νz = 1.28. The horizontal chromaticity and verti-
cal chromaticity are about -2.1 and -1.0, respectively. The
length of each short straight section is 0.5 m. The RF cavity
is located at one of them, and in the mean time, the optical
cavity is located at the other one. The schematic of the ring
is illustrated in Figure 2.

STUDIES OF NONLINEAR EFFECTS
The Frenet-Serret coordinate system (as shown in Fig-

ure 3) is utilized in the analysis in this section. The Hamil-
tonian in Frenet-Serret Coordinate System is

H̃ = −(1 +
x

ρ
)[
(H − eφ)2

c2
−m2c2 − (px − eAx)

2
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Figure 2: Schematic top-view of the 4.8 m ring.

The Frenet-Serret coordinate system is expressed as(x,s, z)in
this Figure (z axis is perpendicular to the paper). The RF
cavity and the interaction point (IP) are located at the cen-
ter of the short straight sections

−(pz − eAz)
2]1/2 − eAs (1)

where the phase-space coordinates are
(x, px, z, pz, t,−H). The total energy and momentum of
the particle are E = H − eφ and p =

√
E2/c2 −m2c2.

Since the transverse conjugate momenta px and pz are
much smaller than the total momentum, we expand the
Hamiltonian up to second order in px and pz

H̃ ≈ 1 + x/ρ

2p
[(px − eAx)

2 + (pz − eAz)
2]

−p(1 +
x

ρ
)− eAs (2)

whereAx = Az = 0 in a normal circular accelerator which
contains transverse magnetic field only.

Figure 3: Frenet-Serret coordinate system for particle mo-
tion in a circular accelerator. x̂, ŝ, and ẑ form the basis of
the Frenet-Serret coordinate system. x̂ indicates the hori-
zontal direction. ẑ indicates the vertical direction.

Disregarding the synchrotron motion, Hamilton’s equa-

tions of betatron motion are

x′ =
∂H̃

∂px
, p′x = −∂H̃

∂x
, z′ =

∂H̃

∂pz
, p′z = −∂H̃

∂z
(3)

We can therefore get:

x′ =
∂H̃

∂px
=

1 + x/ρ

p
px

p′x = −∂H̃

∂x
= −p

ρ
− p2x + p2x

2pρ
+ e

∂As

∂x

z′ =
∂H̃

∂pz
=

1 + x/ρ

p
pz

p′z = −∂H̃

∂z
= e

∂As

∂z
(4)

If there are dipole magnets and quadrupole magnets
only, the magnetic field is expanded up to the quadrupole
component only (ignoring the nonlinear field components
in the fringe field region of the dipole and quadrupole mag-
nets). which means:

∂As

∂z
= −hsBx = −(1 +

x

ρ
)Bx = −B1z

∂As

∂x
= hsBz = (1 +

x

ρ
)Bz

= B0 +B0
x

ρ
+B1x (5)

The obtained equations of betatron motion are

x′′ =

[
− 1

ρ2
+ p̃x

2 1

2ρ2
− p̃z

2 1

2ρ2

]
x

+

[
p̃x

2 1

2ρ
− p̃z

2 1

2ρ

]
−
[
1

ρ3

]
x2 +

B1

Bρ
x

z′′ = p̃xp̃z

(
1

ρ
+

x

ρ2

)
− B1

Bρ
z (6)

where p̃x = px/p and p̃z = pz/p indicating the normal-
ized horizontal momentum and normalized vertical mo-
mentum, respectively. The equations of betatron motion
shown in Eq. 6 contain the nonlinear terms introduced by
dipole magnets. We can therefore build a new Hamiltonian
from these equations.

Hnew =

[
1

2

(
1

ρ2
− B1

Bρ

)
x2 +

1

2
p̃x

2
+

1

2

B1

Bρ
z2

+
1

2
p̃z

2

]
+

1

2

x

ρ

(
p̃x

2
+ p̃z

2
)

(7)

We can then carry out the coordinates transformation.
Convert the new Hamiltonian into new action-angle vari-
ables and expand it around the third order resonance 3νx =
4. The approximated Hamiltonian under this condition can
be expressed as

H ≈ νxJx + νzJz

+g3,0,3,0,4J
3/2
x cos (3φx − 4θ + ξ3,0,3,0,4) (8)
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where ξ3,0,3,0,4 is the phase, the resonance strength
g3,0,3,0,4 can be expressed as

g3,0,3,0,4 · ejξ3,0,3,0,4 =
√
2

8π

∮
α2
x − 1− 2jαx

ρβ
1/2
x

ej[3χx(s)−(3νx−4)θ]ds (9)

In order to use particle tracking method to study the par-
ticles’ behavior around the resonance line 3νx = 4, we
first have to move the bare horizontal tune closed to it. By
adjusting the focusing strength of the two quadrupole mag-
nets and the edge angles of dipole magnets, we can change
the betatron tunes. For example, when we set the edge
angle of dipole magnets as 29◦ and the focusing strength
of quadrupole magnets at K1 = 4 [m−2], the horizontal
tune and vertical tune will be 1.2783 and 1.5334, respec-
tively. Since the horizontal tune is closed to 4/3, we pre-
dict that the particles’ motion under this condition will be
dominated by the third-order resonance line 3νx = 4.
We then put several particles with different initial hori-

zontal deviations at the beginning of the lattice shown in
Figure 4, which indicates the center of one of the straight
sections. The particles have zero horizontalmomentum ini-
tially. In the tracking process, the particles’ coordinates in
horizontal phase space (x, px) are recorded turn by turn.
By observing the Poincaré map in the normalized horizon-
tal phase space shown in Figure 5, we can find the triangle
shape distortion which indicates that the particles’ motion
are dominated by a 3rd order resonance line (3νx = 4). By
converting the turn-by-turn data from the normalized hori-
zontal phase space (X,Px) to proper action-angle variables
(J, φ), we can fit the Hamiltonian tori of the tracking data
points to obtain the corresponding resonance strength. The
fitted result is g3,0,3,0,4,fitted = 1.1079 [(πm)−1/2], which
agrees well with the analytical result g3,0,3,0,4,analytical =
0.8685 [(πm)−1/2].

Dipole

Quadrupole

Figure 4: The optics used in the tracking for studying the
resonance 3νx = 4.
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Figure 5: This plot shows the Poincaré map of the normal-
ized phase space coordinates (X,Px) of betatron motion
near the 3rd order resonance 3νx = 4 at the 4.8 m ring.

DISCUSSION
In this paper, we point out that the nonlinear effects in-

duced by the dipole field is remarkable when the bending
radius of dipole magnets is small. We obtain the expres-
sion of the resonance strengths of the 3rd order resonance
3νx = �, which are considered as the most significant low
order nonlinear resonances induced by dipole magnets, via
the Hamiltonian approach. To compare with the analytical
results, we apply particle tracking method. By transform-
ing the particles’ coordinates from the horizontal phase
space (x, px) to the proper action-angle variables (J, φ),
we can obtain the resonance strengths through fitting the
tracking data. With this method, we show that the fitted
resonance strengths of the 3rd order resonances 3νx = 4
agree with the analytical results well. However, the sys-
tematic studies still need to be carried out to demonstrate
the analytical analysis under different conditions. We will
continue to work on this problem in the future.
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