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Jefferson Lab is using the MATLAB/Simulink library 

for RF systems developed for TESLA Test Facility (TTF) 
as a tool to develop models for its 12 GeV Upgrade and 
the Rare Isotope Accelerator (RIA) and to study the 
behavior and performance of these RF control systems.  
The library includes elements describing a 
superconducting cavity (with mechanical modes excited 
by Lorentz Force effects) and a klystron (including 
saturation characteristics).  It can be applied to gradient 
and phase or in-phase and quadrature (I/Q) control for 
cavities operating either in a self-excited loop (SEL) or as 
a generator driven resonator (GDR).  We will provide an 
overview of the theory behind the library components and 
present initial modelling results for the Jefferson Lab 12 
GeV Upgrade and RIA systems. 
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The Simulink library that has been developed at DESY 

[1] can be used to build powerful, simple-to-use models 
of complex superconducting RF accelerating systems.  
The library is modular and employs state-space formalism 
where appropriate.  The following discussion includes a 
description of the presently available library blocks for 
the cavity, klystron, and controller elements.  As the 
library is expandable, its contents will grow and change as 
elements are added and models for existing elements are 
improved to reflect changes in the underlying 
mathematical models to more closely represent the 
physical behavior of these systems. 
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The cavity model is comprised of an electrical model 

describing the time-varying cavity voltage response to 
current sources and a mechanical model characterizing the 
effect of the cavity voltage on cavity detuning.  The 
output of the mechanical model—change in cavity 
frequency—is used to update the electrical model at each 
simulation time step. 

The electrical portion of the model is based upon the 
standard RLC circuit differential equation model [2,3] for 
a resonant cavity system 
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where V(t) is the cavity voltage, I(t) represents a sum of 
current driving sources such as a klystron generator 
current or charged particle beam traversing the cavity, ωo 
is the cavity resonant frequency, QL is the loaded cavity 

quality (Q) factor, and RL is the shunt impedance of the 
cavity.  It should be noted that eqn. (1) is sometimes 
written in terms of τ, the energy decay time of the cavity, 

so �

�
�

ω
 becomes 

1

τ
.  If V(t) and I(t) are written in terms of 

a slowly varying complex quantity carried on a fast 
oscillation such as ( ) � �� � �� ω=  and ( ) � �� � �� ω= , then the 

complex quantities V and I can be characterized as 
phasors representing the amplitude and phase of V(t) and 
I(t) relative to the fast oscillation ω. This allows eqn. (1) 
to be recast as two first order coupled differential 
equations that can be decoupled and linearized around the 
cavity resonant frequency ωo, since ωo is approximately 
equal to ω. 

After linearization and conversion to linear state-space 
formalism [4], i.e., 
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with state vector x, input vector u, and output vector y, the 

resulting model for �

�
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 (where �� and �� represent 

the real and imaginary parts of the cavity voltage phasor) 
is [3,5] 
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where �� and �� represent the real and imaginary parts of 
the phasor representations of the sum of current sources, 

1
2

ω  is 
2
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ω
 or the HWHM power bandwidth of the 

cavity, and ∆ω is the cavity detuning.  While the vectors � 
and � are identical for this system, it is not necessarily 
true in the general case since the matrices � and � can be 
arbitrary matrices of appropriate dimensions (determined 
by sizes of �, �, and �). In a deviation from the linear 
time-invariant state-space case, the off-diagonal elements 
of the � matrix vary with time since ω∆  is the sum of the 
detuning resulting from the Lorentz force excitation of the 
mechanical modes of the cavity, the static detuning, and 
the frequency shifts due to microphonic sources. As stated 
previously, the model’s cavity element includes this time-
dependent behaviour. 

The mechanical model describes the Lorentz force 
detuning effect.  It assumes that the cavity has multiple 
mechanical modes and that the overall detuning effect is 
the sum of the effects from the individual modes.  The 
equation for an individual mechanical mode is [6,7]  
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where ∆�� is the change in cavity frequency due to the 
excitation of the mode, 

�
ω  is the angular frequency of the 

mode, �� is the Q of the mode, �� is the dynamic Lorentz 
coefficient of the mode, and ���� is the cavity voltage.  In 

state-space formalism with 
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, the system for 

an individual mode is written as [5] 
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The state-space representation for a system with � 

mechanical modes with 
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With this representation, it is possible to simulate a cavity 
with an arbitrary number of mechanical modes since all of 
the relevant information is built into the triplet  �!��!��" 
describing the mechanical model. 

Inputs to the cavity element include frequency shift 
(Hz) due to microphonics, static detuning (Hz), beam 
current amplitude (A) and phase (radians) input, and 
klystron voltage output.  The beam current input is used 
for computing the beam loading on the cavity by 
subtracting off the beam current from the available 
klystron current.  Outputs include cavity voltage, net 
cavity detuning (Hz), and reflected power (V). 

#��������������
The klystron model consists of a normalized response 

table including amplitude saturation for a linear klystron 
(Fig. 1). 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|sqrt(P
in

)| / |sqrt(P
max

)|

A
m

pl
itu

de
 S

ca
le

 F
ac

to
r

Figure 1: Normalized Klystron Amplitude Response. 

Given the time-varying klystron high voltage setpoint, the 
desired output klystron voltage, the output power level at 
saturation (W), and the maximum output power of the 
klystron (MW), the model computes the magnitude of the 
corresponding klystron output voltage.  The phase of the 
klystron voltage is considered fixed; an improvement to 
the model would include saturation effects on the phase.  
The output voltage of the klystron can be optionally 
modified by white noise at an arbitrary fixed phase.  The 
model uses the band-limited white noise Simulink library 
element to produce the amplitude of the noise 
independent of the fixed phase input to the klystron 
element. 
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The available controllers, amplitude, phase, and I/Q, are 

packaged into a single controller element.  All are 
implemented as proportional controllers.  There is an 
adjustable gain for each of the amplitude and phase 
control loops and one adjustable gain for the I/Q loop.  
The individual loops are activated by specifying turn on 
and turn off times (ms). 

The amplitude and phase loops are straightforward 
proportional loops.  The error signal is computed from the 
complex quantities representing the cavity voltage and 
cavity voltage setpoint phasors, and then it is split into 
amplitude and phase signals.  The respective gains are 
applied to the amplitude and phase error signals to 
compute the correction to the klystron voltage. 

In the I/Q algorithm, first, the I/Q signals are extracted 
from the complex phasor signals by decomposing the 
signals into their constituent real and imaginary parts.  
Error signals are computed for the components, and the 
klystron power correction is the error signal scaled by 
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1
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$
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where $��� is the adjustable gain for the I/Q loop and ���� is 
the cavity voltage setpoint. 

The inputs to the controller element include cavity 
voltage and cavity voltage setpoint.  The computed 
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corrections are summed together into a requested change 
in klystron voltage, the output of the controller element. 

%&������$������
The model supports two modes of operation: GDR 

which is the default and SEL.  Since the limiter and loop 
gain of the SEL are packaged into the controller element, 
the mode is activated by specifying SEL turn on and off 
times as is done with the controllers.  The SEL 
implementation provides a loop phase input that is added 
to the phase of the control signal sent to the klystron.  The 
limiter is ideal in that it does not induce deviations in the 
phase of the cavity voltage.  The gain of the limiter is 
modelled as 

 ( )��� ��� ��	
$ � �−  (8) 

where $��	 is an adjustable gain for the SEL, ���� is the 
cavity voltage setpoint, and �
�� is the cavity voltage. 
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The simulation toolkit from TTF includes test models 

(Fig. 2) with configuration files that can be easily 
modified for different SRF systems.  Using the data from 
Table 1 and the example model files, models have been 
developed for the 12 GeV Upgrade and RIA RF systems.  
Although both of these machines are CW, the models are 
configured assuming pulsed operation in order to observe 
the transient effects of changing one aspect of the system 
at a time. 
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Figure 2: Schematic of Model. 
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The 12 GeV Upgrade model assumes, at present, that 

the system will be operated as a GDR with amplitude and 
phase control although in the final implementation the 
control system will likely use an SEL [12].  The model 
includes mechanical mode data measured on prototype 12 
GeV cavities.  The time line of the model is that RF is 
turned on at time zero and filling is finished 5 ms later.  
The beam turns on at 10 ms and then off at 30 ms. RF is 
turned off at 35 ms. In this simulation, the amplitude is 
stable to 2% and the phase is stable to 10-5 radians.  If the 
pulse is made long enough (on the order of 1 s) for the 

mechanical modes to die off, the amplitude and phase 
easily meet the specifications shown in Table 1. 

 
    Table 1: RF System Parameters Used in Models. 
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Figure 3: 12 GeV Upgrade Operated as GDR with 
Amplitude and Phase Control. 

 
JLab 12 GeV 
Upgrade [8] 

RIA 
β=0.61 [9] 

Cavity Frequency 
(MHz) 

1497 805 

Klystron Power (kW) 13.5 10 
Accelerating Voltage 
(MV) 

15 10 

Qo ~1010 ~1010 

QL 2.2 x 107 2 x 107 
R/Q (ohms) 777 300 
Beam Current 
(µAmps) 

430 400 

Synchronous Phase 0o 20o 

Mechanical Modes 
(Hz) 

17.6 29.8 33.7 
35.6 44.9 54.7 
59.1 61 [10] 

80 160 
230 [11] 

RF System 
Specification: 
Amplitude and Phase 

0.001%, 0.1o 
Of Order 
0.1%, 0.1o 
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The RIA model assumes that the system will be 

operated as a SEL with I/Q control.  The model includes 
mechanical mode data measured on SNS cavities because 
SNS cavities may be used in RIA.  The time line of the 
model is that RF is turned on at 10 ms and filling is 
finished 5 ms later.  The beam turns on at 30 ms and then 
off at 50 ms. RF is turned off at 65 ms. In this simulation, 
the amplitude is stable to 0.001% and the phase is stable 
to 10-3 radians. 
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Figure 4: RIA Operated in SEL with I/Q Control. 
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Jefferson Lab is successfully using TTF’s Simulink 

library for RF systems to build models for the Jefferson 
Lab 12 GeV Upgrade and RIA RF systems that include 

measurements of mechanical modes performed on actual 
cavities.  The library is quite sophisticated and can be 
used to build simple-to-use models for complex systems. 
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