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Abstract 

The recent tests of the S1-Global [1] cryomodule at 
KEK provided a unique opportunity to compare the 
performance of four different styles of 1.3 GHz SRF 
cavities and tuners under similar operating conditions. An 
adaptive Lorentz Force Detuning (LFD) compensation 
system deployed at KEK successfully reduced LFD from 
between 100 to 700 Hz at the maximum gradient to better 
than 20 Hz for all four of the cavity types tested. 

INTRODUCTION 
As a part of ILC Global Design Effort, the S1-Global 

Cryomodule was built and installed at KEK by groups 
from KEK, in Japan, DESY and INFN in Europe and 
FNAL and SLAC in the USA. 

 

  

 
 

Figure 1: S1-G Cavity Tuners; a) INFN Blade 
Tuner/FNAL Cavity, b) Saclay Tuner/DESY cavity, and 
c) KEK Slide Jack Tuner/KEK cavity. 

 
One aim of the S-1G project was to compare the static 

and dynamic detuning performance of different candidate 
designs for the 1.3GHz 9-cells SRF elliptical cavities ILC 
cavities. S1-G contained a total of eight cavities, two each 
of four distinct designs as outlined in Table 1. The four 
cavity designs differ significantly in the mechanical 
response to the Lorentz force and to the piezo actuator and 
each of the four different tuners was designed to provide 
appropriate static and dynamic tuning ranges for their 
respective cavities. 
 

Two independent methods were successfully employed 
to compensate for Lorentz force detuning in the S1-G 
cavities.  

 

The first method employed the standard approach of 
exciting the piezo actuator with a half cycle of sine wave 
prior to the arrival of the RF pulse. The duration, delay 
and amplitude of the half sine wave are optimized 
manually by trial and error. The results of those tests are 
described in detail elsewhere [2,3]. 

 

The second method used an adaptive feed-forward 
algorithm based on least-squares to automatically 
determine an optimal waveform for each individual 
cavity. The results of these measurements are described 
below. 

ADAPTIVE LFD COMPENSATION 
A LFD control system built at FNAL was delivered and 

commissioned at KEK during the S1-G LFD studies.  The 
system implemented an adaptive feed-forward algorithm 
that has been described in detail elsewhere [4]. 

 

The 10 MHz IF signals from S1-G the cavities were 
recorded using 100 MHz ADC and digitally converted to 
baseband. The baseband signals were then corrected for 
contamination and used to estimate the cavity detuning 
during the course of each RF pulse.  

 

Prior to compensation, the mechanical response of each 
individual cavity was characterized by driving the piezo 
with a sequence of impulses from 10 ms prior to the 
arrival of the RF pulse to 10 ms after while recording the 
resulting detuning. The results of this procedure 
effectively measure the piezo to detuning impulse 
response over a 20 ms window centred on the RF pulse. 
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and the similar levels obtained for each of the four distinct 
cavity types might seem surprising. The four cavity types 
four distinctly different design philosophies and the 
mechanical response and detuning levels prior to 
compensation differ significantly.  
 

 
Figure 7: RMS residual detuning of six S1G cavities after 
adaptive LS LFD compensation. 
 

The 1ms RF pulse excites a broad mechanical response 
in each of the four cavity types. Reducing the detuning for 
such a short RF pulse requires only an impulse from the 
piezo. Furthermore, while stiffer cavities detune less due 
to the Lorentz force than more compliant cavities, they are 
also less responsive to the piezo and vice versa. 
 

While more complex wave form produced by the 
adaptive procedure may provide only slightly better 
detuning levels when compared to the half-sine  approach, 
it allows each individual cavity to be fully characterized 
and compensated automatically even as cavity operating 
conditions such as the gradient are changed. While this 
may not be important during limited operation of a single 
cryomodule, this could prove to be a significant advantage 
during long term operation of many cyromodules. In 
addition, the more complex waveform produced by the 
adaptive procedure may allow lower piezo drive voltages 
to be used and may reduce levels of residual vibration 
during subsequent RF pulses. 
 

CONCLUSION 
An adaptive Adaptive LFD compensation system was 

successfully used to compensate for Lorentz force 
detuning in each of the four different cavity types 
installed in S1-G. The four cavity/tuner combinations 
tested represent four distinctly different design 
philosophies. 

 

Optimal piezo drive waveform provides a rigorous 
basis for back-to-back cavity performance comparisons. 

Residual LFD could be limited to better than 15 Hz in 
all four cavity types tested. 

LFD control limits for ILC will likely depend more on 
controller and quality of the input signals than the 
mechanical details of cavity/tuner. 
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