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Figure 6: Second sound signal amplitude change 
according to different voltage input (0.2 ms input pulse on 
SMD 3). 
 

 
 
Figure 7: Second sound signal amplitude vs. temperature 
change (10 V, 0.2 ms input pulse on SMD 3). 
 

Second Sound Velocity 
The second sound velocity is given by,  
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where ρ is the liquid helium density (g/cm3), ρn the 
normal fluid density (g/cm3), T the temperature (K), S the 
entropy (J/mole·K), Cν the heat capacity (J/mole·K). To 
determine the propagation velocity, the distance between 
the SMD board to the OST is measured to be 8.6 cm (df) 
and the measured time-of-flight is determined from the 
delay between the trigger of the pulse to the first drop of 
the signal (see Fig. 8). In Fig. 8 (a), the second sound 
wave is measured at 1.56 K with a time-of-flight of 4.37 
ms, which yields to a second sound speed of 19.6 m/s. 
The calculated relative velocity error from the 
measurement is found to be less than 1% within the range 
1.5 K to 2.17 K.  The deviation of the theoretical 
calculated value using Eq. (1) with Bendt et al.’s values 
[8] (see Fig. 8(b)) is 0.1% when T ≤ 1.8K, and less than 
1% for T > 1.8 K. The experimentally derived data agrees 
well with the theoretical expectation especially in the 

region of 1.5 K to 1.8 K.  The second sound velocity 
along with the signal strength shown in Fig. 7 implies the 
importance of the helium bath temperature during the 
quench test. This could affect the ability to detect the 
signal of the OST during the occurrence of each quench 
event.  

Distance Calculation using Second Sound 
Velocity 

The adjustable insert is mounted with an OST which 
allows the distance between the SMD board and the OST 
(movable) to be varied. By using the measured second 
sound velocity, the measured time-of-flight from the 
OSTs and the distance (dcal) between each OST and the 
SMD may be determined. The other OST (non-movable) 
is fixed at df  = 9.44 cm above the board for comparison.  

 

(a)  
 

(b)  
 

Figure 8: (a) Time-of-flight is measured from the point 
when the pulse is triggered until the OST receives the 
signal. (b) Comparison of theoretically calculated [9] and 
experimental values of second sound velocity. 
 

In Fig. 9, the data was taken at 1.69 K, with the 
movable OST adjusted to the highest position (a = 10 cm) 
in our setup, at da = 19.3 cm. The calculated distance error 
is less than ± 0.8 cm. The difference of the measured and 
calculated distance (Δ = dmeasured - dcal) = 1.6 cm is 
explained by the fact that when moving the adjustable 
insert during the measurement, the position of the 
OST/insert in the cryostat was accidently turned. Seven 
measurement results performed at 1.69 K using SMD 3 
are shown in Fig. 10. Fig. 10 (a) shows the reproducibility 
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CONCLUSION & FUTURE WORK 
The second sound detection by using oscillating 

superleak transducers is a direct and simple method to be 
used for cavity diagnostics. The study of second sound 
characteristics plays an indispensable role on 
understanding the mechanism of second sound in 
superfluid helium. An efficient noise reduction increases 
the discernment of the second sound signal to noise level 
(S/N). It is shown that the second sound amplitude 
decreased with the superfluid helium temperature and 
increases with the simulating heating voltage (the quench 
spot in a cavity).  

The measured second sound velocity below the lambda 
point shows agreement with the theoretically predicted 
curve and was used to determine the distance between the 
OST and the heating spot. By evaluating the arrival time 
of the second sound signal after triggering the heater, the 
distance between the heater and the OST can reproducibly 
be determined for the fixed and the adjustable OST. The 
distance computed using the measured second sound 
velocity agrees with the manually measured results within 
the calculated systematic error. A more accurate method 
of determining the distance manually will be developed in 
the next test run.  

Newly manufactured OSTs at CERN feature LEMO 
connectors and membranes sputtered with 3 nm of Ti and 
50 nm of Au. Eight of these were recently installed on the 
SPL test cavity and it is scheduled to undergo RF test in 
the next months.  

 The Cryolab second sound test setup provides an 
important indicator for the cavity tests such as the 
operating temperature and the behaviour of the second 
sound wave. Thus the measurements and studies will 
continue to enhance the understanding of the 
characteristics of second sound and the OSTs.   
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