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Abstract 
This paper reports the research results of effects of 

cathode shapes during buffered and conventional vertical 
electropolishing treatments for single cell 
superconducting radio frequency (SRF) niobium cavities. 
Several different cathode shapes such as, for instance, bar, 
ball, ellipsoid, wheel, etc. were employed. Detailed 
electropolishing parameters at different locations inside a 
single cell SRF cavity were measured using a unique JLab 
home-made demountable cavity, including I-V 
characteristic, removal rate, surface roughness, polishing 
uniformity and so on.  It was demonstrated that optimal 
polishing results could be achieved by changing the 
cathode shape for both BEP and EP.  Implications on the 
electropolishing mechanism of Nb cavities for both BEP 
and EP based on the obtained experimental results are 
discussed. 

INSTRUCTION 
Previous study shows that reactions at different 

locations of the cavity may be different especially during 
BEP process [1]. This paper mainly focused on the effect 
of cathode shape on the process of BEP.  Detailed 
parameters at different locations inside the demountable 
cavity such as, I-V characteristic, removed rate, surface 
roughness, polishing uniformity, and so on were measured 
by a demountable cavity. It was revealed that cathode 
shape had dominant effects on the inhomogeneous 
polishing rates between the equator and iris in an Nb SRF 
single cell cavity for buffered electropolishing (BEP). The 
conventional electropolishing (EP) appeared to have the 
same tendency. This study demonstrated that a more 
homogeneous polishing result could be obtained by 
optimizing the electric field distribution inside the cavity 
through the modification of the cathode shape given the 
conditions that temperature and electrolyte flow were kept 
constant.  

EXPERIMENTAL SETUP 
The experimental setup mainly includes four parts: 1. 

Demountable cavity; 2. Electrolyte circulating system; 3. 
Data acquisition system; 4. Cooling system.  With the 
chemical fume hood, they constitute the whole setup. 
Besides, several cathodes of different shapes are tried as 
now in figure 1. More details please see the paper 
TUPO033 in this proceeding. 

 

Fig. 1: Schematics of (a) the flow chart of BEP system 
and (b) the data acquisition system of the vertical BEP 
system for Nb SRF single cell cavities and the cathodes 
used in this study. 
 

 RESULTS AND DISCUSSION 

Effect of Cathode Shape on I-V Characteristic  
An electropolishing system consists of mainly three 

parts: anode, cathode and electrolyte. So, research on the 
effect of cathode becomes one of critical points in the 
whole electropolishing treatment study. In this part, we 
will mainly discuss the effect of different cathode shape 
on the I-V characteristic, and try to find the way on how 
to apply the experimental findings in real EP and EP 
processes. The effect of cathode in BEP process will be 
firstly discussed, and then we will talk about EP process. 

This study was done through the measurements of a 
series of I-V curves with different cathode shapes in BEP 
experiments. In the experiments of BEP-2, BEP-6, BEP-
8, BEP-13 and BEP-14, the cathodes used were thin bar, 
ellipsoid, ball, wheel cathode 3 and thick bar cathode, 
respectively. Most of them are shown in figure 1. As 
shown in figure 2, I-V curves from the different cathodes 
show great differences. They can be obviously 
distinguished in the etching region. The one with the 
smallest slope in the etching region is obtained by thin bar 
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cathode, and then is obtained by thick bar cathode, 
ellipsoid cathode, ball cathode. The I-V curve which has 
the largest slope in the etching region was obtained by 
wheel cathode 3. Then with the increase of voltage, we 
can find that the I-V curves obtained by the thin bar, thick 
bar and ellipsoid cathode in experiments BEP-2, BEP-14, 
BEP- 6, respectively, don’t have an obvious best 
polishing region.  For the ball shape cathode, although its 
I-V curve has the polishing region, its oscillation region is 
a smooth transition.  Only the I-V curve obtained by 
wheel cathode 3 has the whole typical regions. We think 
those differences should come from following two 
different factors: initial electric field distribution and 
cathode surface area which was shown in the table 1. 

 

 
 
Figure 2: The cavity I-V curves from the different cathode 
shapes in BEP experiment series 1 (BEP-2: thin bar 
cathode; BEP-6: ellipsoid cathode; BEP-8: ball cathode; 
BEP-13: wheel cathode 3; BEP-14: thick bar cathode). 

 
First, for the results of experiment BEP-2, BEP-6 and 

BEP-14 discussed above, we think the main reason was 
due to the differences of cathode areas. As we know, in 
electropolishing process, the cathode will produce a large 
amount of hydrogen gas which will form a gas curtain 
around it in the electrolyte. Since the quantity of H2 is 
determined by the current in the reaction, with the same 
current the cathode with a smaller surface will have a 
thicker layer which we call it “gas curtain around the 
cathode”, and then the more voltage will be dropped by 
the gas curtain. So, if we want to get the same potential 
drop on the anode, the whole voltage between anode and 
cathode will be larger for the smaller cathode surface.  
Apart from creating the drop, the gas curtain also has the 
effect to prevent the ions from getting to the cathode 
surface. So, the cathode polarization also moves the I-V 
towards the higher voltage area. 

As to prove this assumption about the cathode area 
effect, the cathode area research was carried out with 
small sample experiments. The result is shown in figure 3, 
in which the percentage represents the ratio of cathode 
area to anode area. As we see, the same trend was 
obtained in the small flat sample experiments as that 
shown in figure 3. When the cathode area is below a 

specific ratio about 7% in BEP process with respect to 
anode, the I-V curves even cannot have the polishing 
plateau below 30V. However, the minimum area of 
cathode required in the cavity experiments shows a little 
larger than that in the sample experiment. This is not hard 
to understand since the reaction environment in the cavity 
experiment is closed, and the electrolyte volume is also 
less comparing to that in the sample experiment.  So, the 
effect of hydrogen gas will be greater in the cavity 
polishing process than that in the sample experiment. The 
same experiment about surface area research was also 
carried out with EP process. We found the tendency of the 
I-V curves’ development in EP process was similar to that 
in BEP process. However, there was still a little difference 
in EP since we observed that there was a more obvious 
oscillation phenomenon even in the plateau region. We 
thought that this might be caused by the different specific 
mechanisms of reaction between BEP and EP due to the 
difference of electrolytes.  

For the difference between the I-V curve obtained by 
the ball cathode (shown as BEP-13 in figure 2) in BEP 
experiment and the typical electropolishing I-V curve, we 
think that the problem mainly comes from the 
inhomogeneous initial electric field distribution. Here, the 

initial electric field distribution is the electric field 
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Table 1: Ratios of initial electric field between sample 3 
and sample 1 and electrode surface area between cathode 
and anode for different cathode shapes. 

Experiments Cathode 
Electric field 
ratio between 

sample 3 and 1 

Area ratio 
between 

cathode and 
anode  

BEP-2 thin bar 0.13 2.96% 

BEP-6 ellipsoid 0.21 12.68% 

BEP-8 ball 0.16 16.90% 

BEP-13 wheel 3 1.06 54.23% 

BEP-14 thick bar 0.13 7.75% 

Figure 3: The I-V curves obtained from small sample 
experiments with different cathode area during BEP. The 
percentages shown in the figure are the surface area ratios 
between cathode and anode. 
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the compact solid layer in BEP processes are larger than 
their counterparts in EP processes as discussed above.  
The smaller differences of voltages for the forming of the 
oxide layer between different locations in EP process 
make the appearance of a maximum current peak in the 
cavity I-V curve easier. As to the phenomenon that the 
voltage for the current peak appearance is lower in EP 
process than in BEP, we think that, apart from the 
difference in electrolytes, the current in EP process is 
much smaller than that of BEP process as shown in 
figures 3 and 8. So, the gas generated in the polishing 
process will be less in EP than that in BEP process 
leading to the relative less voltage drop caused by bubbles 
in EP than that in BEP 

Another thing we want to discuss here is the limited 
currents with the different cathode shapes in EP process. 
We can see, with the thin bar, thick bar and ball cathode, 
the limited currents in EP process are similar, which are 
around 20A to 25A.  However, with the wheel cathode 3, 
the limited current is about 40A.  We think it is because 
the electric field generated by wheel cathode 3 is more 
uniform and larger on the surface of the anode than that 
with the other cathodes. So, the larger electric field will 
increase the removal rate. This will be discussed in detail 
in the next section. The other explanation about this 
phenomenon is that the hydrogen bubbles generated by 
the wheel cathode will increase the flow rate in 
comparison with the other cathode shapes. However, we 
feel that the first reason is more likely since the hydrogen 
bubbles concentration is always higher for the area close 
to the iris than the equator; however, it does not show a 
faster removal rate in the button sample close to the iris 
with the wheel cathode as shown in table 2. 

 
Effect of Cathode Shape on Removal Rate 

Removal rate is one of most important parameters in the 
polishing process. It includes two aspects which need the 
most attention. One is about the absolute removal rate. 
The other is about the uniformity of the removal rate in a 

cavity. The removal rate has the greatest difference 
between iris and equator according to the previous 
experiences in horizontal EP when a simple bar shape 
cathode is used. 
 

 

Figure 8: The relationship between temperature and 
removal rate in EP and BEP processes. 

For the first aspect, the research on vertical polishing 
and BEP technology can lead to an increase in absolute 
removal rate. Especially for BEP, the research on small 
sample experiment had shown that it had much faster 
removal rate than that of EP. In this study, this result was 
confirmed again. Figure 8 shows the relationship between 
temperature and removal rate in BEP and EP processes 
corresponding to the experiments shown in table 2. For 
the two lowest points of the removal rate data in the BEP 
processes shown in the figure 8, both were obtained from 
the thin bar cathode, and we cannot get the right I-V curve 
since most voltage dropped in the hydrogen curtain 
around the small cathode surface area. So, those two 
points cannot reflect the real results. In this series of study, 
BEP still shows a much higher removal rate than that of 
EP. Besides, as shown in figure 8 from this serious study, 
in the range of 15oC to 22 oC for EP and 20 oC to 27 oC 
for BEP, there are not an obvious relationship between the 
removal rate and temperature. This implies that 
temperature variation in this range does not show too 
much significant effect on the removal rate as compared 
with the effect from the changes in cathode shape. 

Now, let us discuss about the other aspect of removal 
rate: polishing uniformity. For this topic, we will mainly 
use the ratio of the removal rates between sample 3 and 
sample 1 to try to understand reaction mechanism which 
causes the differences in removal rates between iris and 
equator. With the help from previous experience in 
horizontal EP, the removal rate at equator usually was half 
of the removal rate at iris. Similar phenomena were also 
found in our vertical electropolishing process including 
BEP and EP with most cathode shapes like bar, ball as 
well and thick bar cathode as shown in table 2. We think 
that the main reason for the different removal rate 
between sample 1 and sample 3 is from the different 
electric fields at the two different locations. As shown in  
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Table 2: The ratios of removal rates between equator and 
iris from different cathode shapes in BEP and EP 
experiments 

Cathod
e  

electric 
field ratio 
sample3/s

ample1 

removal rate 
ratio in BEP 

process 
sample3/sample1 

removal rate 
ratio in EP 

process 
sample3/sampl

e1  

thin bar 
cathode 

0.13 
0.12 µm /0.57 µm 

=0.21 
0.43 µm /0.85 

µm =0.51 

ball  
cathode 

0.16 
2.07 µm /4.28 µm 

=0.48 
0.24 µm /0.48 

µm =0.50 
wheel 

cathode 
3 

1.06 
3.15 µm /2.44 µm 

=1.29 
0.72 µm /0.65 

µm =1.16 

thick 
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cathode 
0.14 

1.84 µm /2.81 µm 
=0.65 

0.17 µm /0.23 
µm =0.74 
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found that iris is a bit smoother. In the BEP experiments, 
the roughness of sample 1 is always better than that of 
sample 3. Similar trend is observed by AFM 
measurements (see Figures 15 & 16). Our experimental 
results seem to indicate that there is not a direct 
correlation between the surface roughness and the 
optimization of the electric field distribution inside the 
cavity for the EP. For BEP, the correlation somehow 
exists. A more detailed investigation is underway to 
clarify the mystery.   

To compare the roughness of the button samples during 
the two different polishing processes, we can see that BEP 
process always showed a better surface finish than that of 
the EP via the measurements employed both Profilometer 
and AFM. Here, we need to notice that the roughness 
results obtained by Profilometer are quite different from 
those obtained by AFM. With Profilometer, the RMS of 
the surface roughness is usually hundreds of nanometers, 
while the RMS of AFM usually shows tens of nanometers. 
The surface explored by AFM is so small, that it cannot 
render the very big defects like e.g. a grain boundary. The 
roughness detected by AFM is only the intragrain one and 
does not reflect the large scale roughness, while 
profilometer probes several grains.  

Another thing is worth mentioning here is the 
difference between upper and lower half cell in the 
vertical polishing processes. As shown in figures 10 and 
11, although the upper half cells are different between the 
EP and BEP, the lower half cells do not show much 
difference. Besides, the lower half cells show a lustre 
surface finish, they are not like a mirror as that of the 
upper half cells. We think that this should come from the 
difference in the diffusion layer between the upper and 
lower cells due to the gravity of the diffusion layer. This 
difference could have some effects on the RF 
performance of a Nb SRF cavity.  Further research about 
this topic is underway and the result will be published 
later. 

 

CONCLUSION 
With the help of a demountable cavity, the effects of 

different cathode shapes on the polishing processes during 
EP and BEP treatments are studied. Several different 
cathode shapes such as, for instance, bar, ball, ellipsoid, 
wheel, etc. were employed. Detailed electropolishing 
parameters at different locations inside a single cell SRF 
cavity were measured, including I-V characteristic, 
removal rate, surface roughness, polishing uniformity and 
so on.  It was demonstrated that optimal polishing results 
could be achieved by changing the cathode shape for both 
BEP and EP. The experimental results indicated a close 
correlation between the electric field inside the cavity and 
the removal rate. With the optimized wheel cathode via 
Poisson Superfish simulation, a uniform removal rate was 
obtained for both EP and BEP processes. It is believed 
that this fundamental study would provide a useful 
direction for the development of both BEP and EP for 
SRF Nb cavity treatments. Through optical CCD images 

of the whole cavity and the sample analysis by MOM, 
profilometer and AFM, the roughness of inner surface of 
the cavity was reported. BEP showed significant 
advantages in roughness and removal rate in comparison 
with those of the EP. However, the study also showed the 
problem about the difference between the upper and 
lower half cells in the vertical polishing process. This can 
be one of major problems to be overcome for vertical 
polishing for both EP and BEP.  Further study is on the 
way and the results will be reported in near further. 
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