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Abstract
The investigation of wakefields is an important task in the
design and operation of particle accelerators. Computer
simulations are a reliable tool to extend the understanding
of these effects. This contribution presents an application
example of a new method to compute wakefields as well
as parameters derived from those fields, such as higher or-
der mode (HOM) port signals. The method is based on
a reduced order model of the structure created by as set
of 3D eigenmodes, a set of 2D waveguide port modes and
the current density of the beam. In contrast to other wake-
field computations, the proposed method operates directly
on the reduced order model. Therefore, once having es-
tablished this model, the beam-excited fields can be deter-
mined quickly for different beam parameters. As a matter
of fact, only a small part of the reduced system has to be
recomputed for every sweep point. From these advantages
it is obvious, that the method is highly compatible for beam
parameter studies. In a proof of principal the effectiveness
of the method compared to established methods of wake-
field computations in terms of computational time and ac-
curacy is shown.

INTRODUCTION
For the design and operation of particle accelerators, the
computation of beam excited fields, also referred to as
wakefields, is of crucial importance. Several methods for
the computation of wakefields are known and implemented
in highly useful software tools like [1]. The investigation
of the influence of certain beam parameters on the electro-
magnetic fields in the structure, as well as parameters de-
rived from those fields, leads to repetitive computations of
wakefields in the same structure with varying beam param-
eters. For real life examples these structures are often very
large, which leads to large system matrices and therefore to
very long computational times for such parameter studies.
Thus, it is useful to apply the coupling scheme proposed in
[2], to split the full structure in several smaller segments,
describe them by means of the suggested state space equa-
tions and concatenate the segments to the full structure.
The actual purpose of this paper is the generalization of
the method described in [2] such that an ultra-relativistic
beam is accounted for in the state space equations. In fact,
the bunch of charged particles traversing the structure leads
to an additional excitation source.

STATE SPACE MODELS
The straight forward discretization using e.g. the finite in-
tegration techniqe (FIT) leads to a large state space system
of the structure. This system can be reduced using a set

of eigenmodes of the structure. The basic principles of the
derivation are taken from [2] and [3].

Creation of the State Space Model
The state space model is derived by a truncated series ex-
pansion of the wave equation arising from Maxwell’s equa-
tions. For the transient electric field E(r, t), the following
ansatz is chosen:

E(r, t) ≈
N∑
n=1

Ẽn(r)xn(t), (1)

with the field distribution Ẽn(r) of the n-th 3D eigenmode
and a modal, transient weighting factor xn(t) [2]. The
field distributions satisfy the 3D Helmholtz equation on the
computational domain Ω:

∆Ẽν(r) + k2νẼν(r) = 0 on Ω, (2)

and boundary conditions, which state that the waveguide
port boundaries are made of perfect magnetic conducting
material and the structure wall of perfect electric conduct-
ing material. The beam is mathematically described by the
charge density of the single bunches:

ρ(r, t) = q · g(r, t) = q · g⊥(r)gz(r, t) =

q · δ(x− x0)δ(y − y0)
1

σ
√

2π
exp

(
− (z − ct− z0)2

2σ2

)
,

(3)

with the shape function of the bunch g(r, t) and the total
charge of the bunch q [4]. The computations presented in
the scope of this paper are restricted to single bunch exci-
tations. In most cases it is sufficient to describe the longi-
tudinal shape function g⊥(r) as Dirac distribution with the
center x0 respectively y0 and the transversal shape function
gz(r, t) as Gaussian distribution with the square root of the
variance in the direction of propagation, also refered to as
the rms bunch length σ and the starting point z0 [5]. Note
that the beam is ultra-relativistic which states that the par-
ticles moves with the speed of light without changing its
velocity while moving through the structure [4].
In the following derivation a state space model is obtained
in terms of an impedance formulation using modal voltages
and currents which have certain advantages over the more
often used normalized wave amplitudes. The state space
system without charges can be described in terms of inter-
action integrals using the 3D eigenmodes of the structure
and the current density at the ports as well as parameters
from the eigenmodes as in [2].
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When taking charges into account, additionally a similar
interaction integral between the 3D eigenmodes Ẽn(r) and
the bunch current density JBeam(r, t) needs to be com-
puted:

∫∫∫
Ω

JBeam(r, t) · Ẽn(r) dr =

qc

σ
√

2π

L∫
0

Ẽn,z(x0, y0, z) exp

(
− (z − ct− z0)2

2σ2

)
dz

︸ ︷︷ ︸
pBeam,n(t)

,

(4)

with the speed of light in vacuum c and the length of the
beam axis L. For the description of the beam a modal in-
cident beam power pBeam,n(t) is defined. From the inter-
action integral in equation (4) and the energy stored in the
n-th 3D eigenmode Wn, the state space model from [2] is
extended in the following manner:

∂

∂t
x(t) = A x(t) + BPort iPort(t)

− 1

2


0
1√
W1

...
0
1√
WN


︸ ︷︷ ︸

BBeam


pBeam,1(t)
pBeam,2(t)

...
pBeam,N (t)


︸ ︷︷ ︸

pBeam(t)

, (5)

v(t) = Cx(t). (6)

For this system of ordinary differential equations a cor-
rection term is obtained, in order to account for neglected
eigenmodes in the series expansion and by this, improve
the accuracy of the system. Therefore, from the full FIT
system a number Ncr of ”correction modes” are com-
puted1. The corrected state space model is transformed
from an impedance formulation to a scattering formula-
tion by using the port impedances. For given input para-
meters, current and incident beam power, the ODE system
can be solved, since the model is comparably small and
can be conveniently computed my means of standard ODE
solvers.

Advantages and Disadvantages
With changing beam parameters, such as σ, q, x0 and
y0, only the excitation term corresponding to the beam
pBeam(t) has to be recomputed since only this vector de-
pends on these parameters. The incident modal beam
power is only a small part of the entire system. While cre-
ating and solving the state space system takes longer than
the direct evaluation of the port signals with [1], comput-
ing solely the incident modal beam power and solving the

1for further information regarding the correction term see [2]

state space system is faster. This leads to shorter computa-
tional time after a certain number of repetitions with differ-
ent beam parameters.
The size of the model and its accuracy depend highly on the
number of 3D eigenmodes which are considered in equa-
tion (1). In fact, at least all 3D eigenmodes which have
their resonant frequency in the frequency interval of inter-
est have to be employed in the series expansion.
As an additional advantage, investigations in frequency and
time domain can be performed with and without beam
using the same model. For investigations in frequency
domain the tranfer function of the ODE system needs to
be computed. Also the full electromagnetic fields in the
structure can be computed by means of equation (1), once
the transient weighting factors are obtained by solving the
ODE system.

APPLICATION EXAMPLE
As application example a simple structure is chosen in form
of a cylindrical cavity with an identical beam pipe on ev-
ery end. To get the field information from the inside, four
couplers are clamped on the cavity, as shown in Figure 1.

Figure 1: Structure used as application example.

The beam is defined at the center of the beampipes and the
cavity. The bunch travels in positive z direction. The pre-
sented method is compared to the Wakefield Solver of CST
Studio 2012 [1], in both computational time and accuracy.
For the computations shown here, a state space model
using N = 30 3D eigenmodes and M = 4 2D eigenmodes
(since only the TEM port mode at each coupler is consid-
ered) is used. The computation of the state space model
leads to the equivalent circuit as shown in Figure 2.

Transient Port Signals
For the first basic example a rms-beam length of 35 mm
and a charge of 1 nC is chosen. The computed transient
port signal at Port 1 is plotted in Figure 3. While the model
without correction term (plotted with dashed green line)
shows quite poor agreement with the solution computed us-
ing CST Microwave Studio (plotted with dashed red line),
the solution obtained by the corrected state space model
(plotted with blue line) shows a very good agreement with
a mean relative error of 7.1101 · 10−3W−

1
2 .
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Figure 2: Equivalent circuit with modal voltages (in
red), modal currents (in blue) and incident beam power
(in green) and the impedances of the couplers as port
impedances of 50 Ω.
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Figure 3: Transient signals at port 1 excited by a beam with
q = 1 nC and σ = 35 mm, with no shift from default posi-
tion.

The method is also verified using different transversal po-
sitions x0 and y0 of the beam. For the computation shown
in Figure 4 a transversal shift of x0 = 3.1415 mm and
y0 = −14.03 mm is used, whereas the charge q and the
rms beam length σ remain unchanged.
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Figure 4: Transient signals at port 3 excited by a beam with
q = 1 nC and σ = 35 mm, with shift of x0 = 3.1415 mm
and y0 = −14.03 mm from default position.

Here the computation of the state space system without cor-
rection shows again a rather poor accuracy, compared to the
CST solution. The computation of the corrected state space
model shows a very good agreement with a mean relative

error of 8.6648 · 10−3W−
1
2 .

Computational Effort
The computational effort depends highly on the desired
accuracy. A very accurate state space model needs a large
number of considered 3D eigenmodes which causes the
computation to be time demanding. On the other hand
too few considered 3D eigenmodes will cause the system
to have a bad accuracy. A very important parameter is
the spectrum of the beam. For transient investigations of
wakefields the number N should be chosen in accordance
with the spectrum of the beam. In fact, for shorter bunches
more eigenmodes need to be considered for the same accu-
racy. With a total number of 371,124 mesh-cells, compu-
ting the eigenmodes took 22 minutes and 7 seconds using
Advanced Krylov Subspace Method and no symmetries of
the structure. Obtaining the full state space system from
the eigenmodes took 48 minutes and 15 seconds. Recom-
putation of the incident beam power and solving the ODE
system took 68 seconds. The same computation took about
127 seconds with CST Studio. This states that this de-
scription becomes useful if more than 70 different tran-
sient port signals derived by beam parameters need to be
computed. All computations were performed on Intel(R)
Xeon(R) CPU E5-1620 0 @ 3.60 GHz with 64 GB RAM
running Windows Server 2012.

CONCLUSION
This contribution presents a proof of principle for the pre-
sented method. It is usable to achieve shorter computation
times for parameter studies having a large number of differ-
ent beam parameters. In fact, for the actual demonstration
example, the described method does not have benefits in
terms of computational times. However, it is planned to
combine the coupling formalism [2] with the demonstrated
methodology to reduce the time for port signal computa-
tions of large structures, like complete SRF structures.
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