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Abstract
The vortex penetration field of the multilayer coating

model with a single superconductor layer and a single in-
sulator layer formed on a bulk superconductor are derived.
The same formula can be applied to a model with a super-
conductor layer formed on a bulk superconductor without
an insulator layer.

INTRODUCTION
The multilayer coating model [1] was proposed as a

novel method to push up the rf-breakdown field of super-
conducting cavities. The model consists of alternating lay-
ers of superconductor layers (S) and insulator layers (I)
formed on a bulk Nb. The S layers are assumed to with-
stand higher field than the bulk Nb and shield the bulk Nb
from the applied rf surface field B0, by which B0 is de-
creased down to Bi (< B0) on the surface of the bulk Nb.
Then the cavity with the multilayered structure is thought to
withstand a higher field than the Nb cavity, if B0 is smaller
than the vortex penetration field [2] of the top S layer Bv ,
and Bi is smaller than � 200mT, which is thought to be
the maximum field for the bulk Nb.
In order to evaluate the maximum surface field of a cav-

ity with the multilayered structure, correct formulae that
can describe the shielded magnetic field Bi and the vor-
tex penetration field of the top S layer Bv should be de-
rived [3]. The detailed derivation process of the mag-
netic field attenuation formulae and thus the shielded mag-
netic field Bi of the multilayer coating model with a single
superconductor layer and a single insulator layer formed
on a bulk superconductor is found in Ref. [4], where the
Maxwell equations and the London equations are solved
with appropriate boundary conditions.
The vortex penetration field is derived from competing

forces acting on a vortex at a top of the S layer. The vortex
feel two distinct forces: (i) a force from an image current
jI due to an image antivortex, and (ii) from a Meissner cur-
rent jM due to an external field. In this paper these two
forces are evaluated, and the vortex penetration field of the
multilayer coating model is derived.

VORTEX PENETRATION FIELD OF THE
FILM SUPERCONDUCTOR IN AN
UNIFORMMAGNETIC FIELD

In this section the vortex penetration field of the super-
conductor film in an uniform magnetic field is evaluated
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Figure 1: A superconductor film in an uniform magnetic
field. The filled circle shows a vortex, and the open circle
shows an image antivortex introduced to satisfy the bound-
ary condition of zero current normal to the surface.

as a simple example. The procedures shown here can be
applied to the multilayer coating model in the next section.
Let us consider a superconductor film immersed in an

uniform magnetic field (see Fig. 1). The film is parallel
to the y-z plane and thus parpendicular to the x-axis. The
region 0 ≤ x ≤ d is the superconductor with the Lon-
don penetration depth λ and the coherence length ξ, and
the other regions x < 0 and x > d are vacuum. The ap-
plied magnetic field is parallel to the z-axis, and is given
by Bext = (0, 0, B0). It is assumed that the material of
the film is an extreme Type II superconductor (λ � ξ), and
the film thickness is larger than the the coherence length
(d � ξ).
Suppose that a vortex that is parallel to the z-axis is at

(x, y) = (ξ, 0), an edge of the film. Then an antivortex at
(x, y) = (−ξ, 0) is introduced as an image of the vortex
to satisfy the boundary condition of zero current normal to
the surface as shown in Fig. 1. The magnetic field of the
antivortex is given by BI = (0, 0, (−φ0/2πλ2) ln(λ/r))
for ξ < r < λ [5], where φ0 = 2.07 × 10−15Wb
is the flux quantum and r is a distance from its core at
(x, y) = (−ξ, 0). The associated current density at the
vortex position (x, y) = (ξ, 0) is given by jI = (0, jI y, 0),
where jI y = −φ0/(4πμ0λ

2ξ). Then the vortex receives
the Lorentz force [5]:

fI = jI × φ0ẑ = − φ2
0

4πμ0λ2ξ
x̂ , (1)

where x̂ = (1, 0, 0) is an unit vector. Thus the vortex is
attracted by the antivortex outside the film. It should be
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noted that an infinite number of images are required to sat-
isfy the boundary condition. Under the assumption d � ξ,
however, the vortex at (x, y) = (ξ, 0) receives a force from
the nearest image at (x, y) = (−ξ, 0) dominantly, and con-
tributions from other images are negligible.
In order to evaluate the force due to the external field,

the distribution of screened field in the film is required.
Since the magnetic field in the film can be derived from
the London equation d2B/dx2 = B/λ2 with bound-
ary conditions B(0) = B0 and B(d) = B0, we obtain
B(x) = B0 cosh(x

λ − d
2λ )/ cosh d

2λ . Then the Meissner
current at the vortex position is given by jM = (0, jM y, 0)
and jM y = −(1/μ0)(dB/dx)|x=ξ � (B0/μ0λ) tanh d

2λ ,
where the assumption d � ξ is used. Thus the force from
the external field is given by

fM = jM × φ0ẑ =
B0φ0

μ0λ
tanh

d

2λ
x̂, (2)

by which the vortex is attracted to the inside of the film.
The force acting on the vortex is given by summation of

the above two forces: ftot = fI + fM. When the external
field B0 is so small that |fI| > |fM|, the force ftot directs
the outside of the film. This force acts as a barrier that
prevents the vortex penetration, which is called the Bean-
Livingston barrier. When the external field B0 is so large
that |fI| < |fM|, the barrier disappears and the the vortex
is drawn into the film. The external field that lets these
two forces balance is called the vortex penetration fieldBv ,
which can be evaluated by solving the equation

ftot = 0. (3)

When the film has an infinite thickness (d → ∞), Bv is
reduced to the well-known expression for the semi-infinite
superconductor,

Bv =
φ0

4πλξ
� 0.7Bc , (4)

where Bc is the thermodynamic critical magnetic field. On
the other hand, when the film thickness is thinner than the
London penetration depth (d � λ), Bv is reduced to that
for the thin film superconductor [6],

Bv =
φ0

4πλξ

1
d
2λ

=
φ0

2πdξ
. (5)

It should be noted that Eq. (5) can not be applied to the
multilayer coating model, because the magnetic fields on
the both sides of one superconductor layer have different
amplitudes. In the next section, the vortex penetration field
of the multilayer coating model is derived by reevaluating
the force acting on the vortex.

VORTEX PENETRATION FIELD OF THE
MULTILAYER COATING MODEL

Let us consider a model with a single S layer and a sin-
gle I layer formed on a bulk superconductor as shown

Figure 2: A multilayer coating model with a single S layer
and a single I layer formed on a bulk superconductor.

in Fig. 2. The region x < 0 is vacuum, the region I
(0 ≤ x ≤ dS ) is S layer with the London penetration depth
λ1, the region II (dS < x < dS + dI) is I layer with per-
mittivity εrε0, in which εr is a relative permittivity, and the
region III (x ≥ dS + dI) is a bulk superconductor with
the London penetration depth λ2, where all layers are par-
allel to the y-z plane and then perpendicular to the x-axis.
The applied electric and magnetic field are assumed to be
parallel to the layers.
The force due to the image vortex fI is given by Eq. (1)

when the material of the S layer and its thickness satisfy
λ1 � ξ1 and dS � ξ1. In order to evaluate the force
due to the external magnetic field fM, the magnetic field
distribution in the S layer is required, which can be derived
by solving the London equations in the region I and III,
and the Maxwell equations in the region II, with boundary
conditions given as continuity conditions of the electric and
magnetic field at x = dS and x = dS + dI [4]. Assuming
an insulator thickness dI � (

√
εrk)−1, the magnetic field

attenuation formula for the region I can be reduced to the
simple form [3]:

B = B0

λ1 cosh dS−x
λ1

+ (λ2 + dI) sinh dS−x
λ1

λ1 cosh dS
λ1

+ (λ2 + dI) sinh dS
λ1

. (6)

It should be noted that Eq. (6) is reduced to the well known
expression B = B0e

−x/λ1 , when the S layer thickness is
infinite (dS → ∞). Then the Meissner current in the S
layer, jMy = −(1/μ0)dB/dx, is given by

jMy =
B0

μ0λ1

λ1 sinh dS−x
λ1

+ (λ2 + dI) cosh dS−x
λ1

λ1 cosh dS
λ1

+ (λ2 + dI) sinh dS
λ1

, (7)

and thus the Lorentz force, fM = jM × φ0ẑ, is given by

fM =
B0φ0

μ0λ1

λ1 sinh dS−x
λ1

+ (λ2 + dI) cosh dS−x
λ1

λ1 cosh dS
λ1

+ (λ2 + dI) sinh dS
λ1

x̂ . (8)

Balancing the Lorentz forces given by Eq. (1) and Eq. (8),
we obtain the vortex penetration field of the multilayer
coating model. Completed results and discussions are seen
in Ref. [3].
It should be noted that the resultant formula can be ap-

plied to a model with an S layer formed on a bulk super-
conductor without an I layer (dI → 0) [3].
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SUMMARY
The vortex penetration field of the multilayer coating

model was derived from the RF electromagnetic field atten-
uation formulae [3, 4]. The same formula can be applied to
a model with a single S layer formed on a bulk supercon-
ductor without an I layer.
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