
A GPU BASED 3D PARTICLE TRACKING CODE FOR
MULTIPACTING SIMULATION*

T. Xin#,1,2, I. Ben-Zvi1,2, S. Belomestnykh1,2, J. C. Brutus1, V. N. Litvinenko1,2,
I. Pinayev1, J. Skaritka1, Q. Wu1, B. Xiao1

1Brookhaven National Laboratory, Upton NY 11973, USA
2Stony Brook University, Stony Brook NY, 11794, USA

Abstract
A new GPU based 3D electron tracking code is

developed at BNL and benchmarked with both popular
existing parallel tracking code and experimental results.
The code takes advantage of massive concurrency of
GPU cards to track electrons under RF field in 3D
Tetrahedron meshed structures. Approximately ten times
more FLOPS can be achieved by utilizing GPUs compare
to CPUs with same level of power consumption. Different
boundary materials can be specified and the 3D EM field
can be imported from the result of Omega3P calculation.
CUDA_OpenGL interop was implemented so that the
emerging of multipactors can be monitored in real time
while the simulation is undergoing. Code also has GPU
farm version that can run on multiple GPUs to further
increase the turnover of multipacting simulation.

INTRODUCTION
Electron multipacting (MP) study in an SRF cavity and

power coupler is of great importance in both designing
and operating phase of the device. There are several 2D
codes that can handle structures with cylindrical
symmetry such as Multipac and Fishpact. To deal with
3D structures we have Track3P solver in the ACE3P
package and Particle Studio in the CST suite. For 2D
codes the limitation is obvious, especially when we are
facing a power coupler problem where the structures are
usually lack azimuthal symmetry. The Track3P code is
extremely powerful in terms of the range of problems it
can handle but it also requires a cluster such as NERSC to
fully harness this power. Therefore we developed this
GPU based 3D tracking code to increase the turnover of
the multipacting simulation in SRF structures with only
several GPU cards. This code can run on either PC or
workstation as long as a GPU that support Nvidia CUDA
computing capability 1.3 and above is available.

STRUCTURE OF THE CODE
The idea of this code is to take the advantage of high

concurrency of the GPU to run a large scale Monte Carlo
process to simulate the multipacting phenomenon. There
are three primary parts in the code.

Main (Master) Function
The main function is a host function that runs on CPU

and controls the work flow of the program. All the kernels
running on GPU are launched from the main host code.
First, the input parameters are read into the main function
from an input file. Then the geometry model of an RF
structure and the field distribution from Omega3P
eignesolver are read in. The mesh model will be pre-
processed before it is sent to the GPU so that the particles
can be more easily located when it is going through the
tracking process. Then the main function calls the
sequence of the core kernels in the display call back
function of the OpenGL so that the tracking process is
synchronized with the rendering process. The core
tracking kernels will be discussed below.

Momentum Update
Initial locations, momentums and relative RF phases of

the particles are generated by a kernel called init_par on
GPU. Then the field strength at the location of the particle
is calculated by using first order shape function of the
Tetrahedral element and the field info on the vertex of the
element in which the particle is located. After the field
information is ready, the momentum updating kernel
takes the pointer to the chunk of global memory that
stores the information and starts calculating the new
momentum of the particles. The momentum update task
was done by a fourth order Runge-Kutta method. After
the momentum is updated, the new location of the particle
is also updated as if there is no collision. We call this a
virtual movement of the particle. The further steps will be
conducted by the particle locating kernel, which will be
discussed in the following section.

Since momentum updating does not involve the
memory copying between GPU and CPU, it can save us
considerable amount of time. Each momentum updating
kernel requires 90 registers, which still needs some
optimization. But even with this amount of register
requirement a low tier GeForce GTX 860M GPU can run
about 50 thousands of the kernels simultaneously and do
one iteration in about 30 ms for 2 million particles.

Particle Locating
The code spends major portion of time on locating the

particle after each virtual movement of the particle. The
data structure of the mesh model is organized so that each
mesh element also stores the ID of the four neighbor
elements as well as the internal ID of the surfaces they
shared. Every time after the particle is virtually moved by

* This work was carried out at Brookhaven Science Associates, LLC
under Contracts No. DE-AC02-98CH10886 and at Stony Brook
University under grant DE-SC0005713 with the U.S. DOE.

#txin@bnl.gov

MOPB060 Proceedings of SRF2015, Whistler, BC, Canada

ISBN 978-3-95450-178-6

242C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Fundamental SRF R&D - Bulk Nb

C09-Multiipacting/Field emission theory

the momentum updating kernel, we follow the procedure
of following pseudocode [1]:

Calculate the Barycentric coordinates (B-coords) of the
particle in the old element.

If the particle is still in the old tet mesh (all B-coords > 0):

Make a real movement on the particle;
Update the momentum of the particle;
Return;

Else:

Calculate the parametric coordinates (a, b) of intersect of
the virtual trajectory of the particle with the walls of the
tet element; there will be one and only one pair of
coordinates falls in the range (0<a<1; 0<b<1; a+b<1) and
the side corresponding to that point is the side that the
virtual trajectory went through.

If the particle hit a wall for the first time:

Record the ID of the wall hit by the particle;
Generate the new momentum of the particle as if it
is a new particle;
Flag the particle as a particle that just hit a wall;
Return;

Else if the particle hit the wall in previous time step:

Flag the particle as dead;
Return;

Else if the particle hit a shared wall:

Update the ID of tet mesh the particle is located and
go back to the top of the code.

The code actually keeps a record of how many steps the
kernel took to eventually find the particle and adjust the
interval of time step of each individual particle
accordingly. If the kernel took too long to locate the
particle then the time step will be halved in next iteration.

After every particle is either located or registered dead,
the master clock advance by one time step and the EM
field is updated.

After every certain amount of time, 2 RF cycles is set
as a default for now, the master function calls the memory
copy of the results back from GPU to CPU and does a
sort on the flags to get rid of the dead particles so that the
following simulation can focus on the active particles
only.

The particle locating kernel requires significantly more
registers (180) and has much more branching than the
momentum update kernel. Both are undesirable for a GPU
code. However the maximum achievable GFLOPs of this
kernel on a Tesla K40 card is still around 150 which is
about three times than an Intel i7 quad-core CPU can
provide. Although there is still ample of space for
improvement on the algorithm of this kernel, we already
can see the power of a GPU accelerated code.

PERFORMANCE AND RESULT
BENCHMARKING

The performance of GPU kernels and of an equivalent
CPU code is shown in Figure 1.

Figure 1: Performance improvement by implementing
GPU kernels.

As we can see, the code runs about three times as fast
on an Nvidia Tesla k40 GPGPU card than on an Intel i7
quad-core and the work can be easily distributed to
multiple GPU cards on a GPU farm due to the
independency between the different jobs.

We did three set of benchmarking between our GPU
code and the Track3P code as well as with the
experimental results. In most of cases we saw certain
level of consistency between the simulation results and
the experiment observations.

112 MHz QWR Injector
The 112MHz QWR cavity has a coaxial fundamental

power coupler and a choke joint structure cathode stalk.
Figure 2 shows the section view of the cavity [2].

Figure 2: Section view of the 112MHz cavity.

The simulation results from GPU code and Track3P are
shown in Figure 3 below. We can see consistency between
the two results. There are three main multipacting bands.
The first one appears when the gun voltage reaches 40 to
50 kV. This MP band is located inside the cavity. The
second one emerges at around 200 kV gun voltage and is
persistent to about 650 kV. This MP is located in FPC
structure. The third one is located in the cathode stalk and
the corresponding gun voltage is from 600 kV to 1 MV.
The locations of the MP bands are shown in Figure 4.

0

100

200

300

400

500

Momentum Update Particle Locating

GF
LO

PS

Performance Improvement

GPU
(Tesla K40)

CPU
 (i7 4710)

Proceedings of SRF2015, Whistler, BC, Canada MOPB060

Fundamental SRF R&D - Bulk Nb

C09-Multiipacting/Field emission theory

ISBN 978-3-95450-178-6

243 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 3: Simulation results of the enhanced counter
function for the 112 MHz cavity by GPU code and
Track3P.

 (a) (b)
Figure 4: Location of MP in the 112 MHz cavity given by
(a) GPU code shown as red dots and (b) Track3P shown
as white dots. The pair of pictures from top to bottom
shows the MP at gun voltage equal to 40 kV, 200 kV and
600 kV respectively.

All the MP bands were observed in the gun
commissioning at BNL early this year. Fortunately we
were able to overcome MP eventually [3].

2.1 GHz 3-Cell Cavity with Coupling Slots
The 2.1 GHz normal conducting 3-cell cavity was

designed for the Low Energy RHIC electron Cooler
(LEReC) as an energy spread correcting cavity. The
original design has coupling slots between the
neighbouring cells. The multipacting study was needed at
the time and we decided to use this as a benchmark for
the new GPU code. The simulation results of the
enhanced counter function are shown in Figure 5 and the
locations of the MP are shown in Figure 6.

Figure 5: Enhanced counter function for the 2.1 GHz
cavity

Figure 6: Location of MP in the 2.1 GHz cavity at
Vg = 240 kV

As we can see, MP at 240 kV is primarily located in the
coupling slots. And both code give similar predictions.

56 MHz QWR Cavity
The commissioning of the 56 MHz SRF QWR cavity

has also been done early this year at BNL. This gives us
an opportunity to cross compare observations of MP
behavior of this cavity, the previous simulation results
done by Track3P and the simulations by our GPU code.
The simulation results of enhanced counter function and
location of MP are shown in Figures 7 and 8 respectively.

Figure 7: Enhanced counter function of 56 MHz cavity

The experimental observation shows that at around 50
kV cavity voltage there was some relatively strong MP
[4]. This can be seen as the confirmation of the simulation
result from both GPU code and Track3P.

Figure 8: Location of MP in 56 MHz cavity at Vg=40 kV.
The MP is located at the connection between the FPC port
and the cavity back wall.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

0 50 100 150

En
ha

nc
ed

 C
ou

nt
er

 F
un

ct
io

n

Gun Voltage (kV)

Ehanced Counter Function

GPU

Omega3P

MOPB060 Proceedings of SRF2015, Whistler, BC, Canada

ISBN 978-3-95450-178-6

244C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Fundamental SRF R&D - Bulk Nb

C09-Multiipacting/Field emission theory

CONCLUSION
We developed a GPU-based 3D particle tracking code

for MP simulation. The code gives comparable results to
Track3P and agrees with the experimental observations to
a certain level. The code can run on multiple Nvidia GPU
cards simultaneously and the performance scales near
linearly with the number of devices.

ACKNOWLEDGMENT
The authors wish to thank Dr. Li from SLAC for his help
with Track3P issues.

This research used resources of the National Energy
Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES
[1] A. Haselbacher, F.M. Najjar, J.P. Ferry, Journal of

Computational Physics 225(2), 2198 (2007).
[2] T. Xin et al., Simulations of Multipacting in the

Cathode Stalk and FPC of 112MHz Superconducting

[3] S. Belomestnykh et al., Commissioning of the 112
MHz SRF Gun, THPB058, Proceedings of SRF
2015, Whistler, Canada.

[4] Q. Wu et al., Beam Commissioning of the 56 MHz
QW Cavity in RHIC, WEBA07, Proceedings of SRF
2015, Whistler, Canada.

Electron Gun, TUPP 082, Proc. of IPAC2012,
New Orleans, Louisiana, USA (2012).

D

Proceedings of SRF2015, Whistler, BC, Canada MOPB060

Fundamental SRF R&D - Bulk Nb

C09-Multiipacting/Field emission theory

ISBN 978-3-95450-178-6

245 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

