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Abstract 
A new GPU based 3D electron tracking code is 

developed at BNL and benchmarked with both popular 
existing parallel tracking code and experimental results. 
The code takes advantage of massive concurrency of 
GPU cards to track electrons under RF field in 3D 
Tetrahedron meshed structures. Approximately ten times 
more FLOPS can be achieved by utilizing GPUs compare 
to CPUs with same level of power consumption. Different 
boundary materials can be specified and the 3D EM field 
can be imported from the result of Omega3P calculation. 
CUDA_OpenGL interop was implemented so that the 
emerging of multipactors can be monitored in real time 
while the simulation is undergoing. Code also has GPU 
farm version that can run on multiple GPUs to further 
increase the turnover of multipacting simulation. 

INTRODUCTION 
Electron multipacting (MP) study in an SRF cavity and 

power coupler is of great importance in both designing 
and operating phase of the device. There are several 2D 
codes that can handle structures with cylindrical 
symmetry such as Multipac and Fishpact. To deal with 
3D structures we have Track3P solver in the ACE3P 
package and Particle Studio in the CST suite. For 2D 
codes the limitation is obvious, especially when we are 
facing a power coupler problem where the structures are 
usually lack azimuthal symmetry. The Track3P code is 
extremely powerful in terms of the range of problems it 
can handle but it also requires a cluster such as NERSC to 
fully harness this power. Therefore we developed this 
GPU based 3D tracking code to increase the turnover of 
the multipacting simulation in SRF structures with only 
several GPU cards. This code can run on either PC or 
workstation as long as a GPU that support Nvidia CUDA 
computing capability 1.3 and above is available.   

STRUCTURE OF THE CODE 
The idea of this code is to take the advantage of high 

concurrency of the GPU to run a large scale Monte Carlo 
process to simulate the multipacting phenomenon. There 
are three primary parts in the code. 

Main (Master) Function 
The main function is a host function that runs on CPU 

and controls the work flow of the program. All the kernels 
running on GPU are launched from the main host code. 
First, the input parameters are read into the main function 
from an input file. Then the geometry model of an RF 
structure and the field distribution from Omega3P 
eignesolver are read in. The mesh model will be pre-
processed before it is sent to the GPU so that the particles 
can be more easily located when it is going through the 
tracking process. Then the main function calls the 
sequence of the core kernels in the display call back 
function of the OpenGL so that the tracking process is 
synchronized with the rendering process. The core 
tracking kernels will be discussed below.  

Momentum Update 
Initial locations, momentums and relative RF phases of 

the particles are generated by a kernel called init_par on 
GPU. Then the field strength at the location of the particle 
is calculated by using first order shape function of the 
Tetrahedral element and the field info on the vertex of the 
element in which the particle is located. After the field 
information is ready, the momentum updating kernel 
takes the pointer to the chunk of global memory that 
stores the information and starts calculating the new 
momentum of the particles. The momentum update task 
was done by a fourth order Runge-Kutta method. After 
the momentum is updated, the new location of the particle 
is also updated as if there is no collision. We call this a 
virtual movement of the particle. The further steps will be 
conducted by the particle locating kernel, which will be 
discussed in the following section.  

Since momentum updating does not involve the 
memory copying between GPU and CPU, it can save us 
considerable amount of time. Each momentum updating 
kernel requires 90 registers, which still needs some 
optimization. But even with this amount of register 
requirement a low tier GeForce GTX 860M GPU can run 
about 50 thousands of the kernels simultaneously and do 
one iteration in about 30 ms for 2 million particles.  

Particle Locating 
The code spends major portion of time on locating the 

particle after each virtual movement of the particle. The 
data structure of the mesh model is organized so that each 
mesh element also stores the ID of the four neighbor 
elements as well as the internal ID of the surfaces they 
shared. Every time after the particle is virtually moved by 
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the momentum updating kernel, we follow the procedure 
of following pseudocode [1]: 

Calculate the Barycentric coordinates (B-coords) of the 
particle in the old element. 

If the particle is still in the old tet mesh (all B-coords > 0 ): 

Make a real movement on the particle; 
Update the momentum of the particle; 
Return; 

Else: 

Calculate the parametric coordinates (a, b) of intersect of 
the virtual trajectory of the particle with the walls of the 
tet element; there will be one and only one pair of 
coordinates falls in the range (0<a<1; 0<b<1; a+b<1) and 
the side corresponding to that point is the side that the 
virtual trajectory went through.  

If the particle hit a wall for the first time: 

Record the ID of the wall hit by the particle; 
Generate the new momentum of the particle as if it 
is a new particle; 
Flag the particle as a particle that just hit a wall; 
Return; 

Else if the particle hit the wall in previous time step: 

Flag the particle as dead; 
Return; 

Else if the particle hit a shared wall: 

Update the ID of tet mesh the particle is located and 
go back to the top of the code.

The code actually keeps a record of how many steps the 
kernel took to eventually find the particle and adjust the 
interval of time step of each individual particle 
accordingly. If the kernel took too long to locate the 
particle then the time step will be halved in next iteration.  

After every particle is either located or registered dead, 
the master clock advance by one time step and the EM 
field is updated.  

After every certain amount of time, 2 RF cycles is set 
as a default for now, the master function calls the memory 
copy of the results back from GPU to CPU and does a 
sort on the flags to get rid of the dead particles so that the 
following simulation can focus on the active particles 
only.  

The particle locating kernel requires significantly more 
registers (180) and has much more branching than the 
momentum update kernel. Both are undesirable for a GPU 
code. However the maximum achievable GFLOPs of this 
kernel on a Tesla K40 card is still around 150 which is 
about three times than an Intel i7 quad-core CPU can 
provide. Although there is still ample of space for 
improvement on the algorithm of this kernel, we already 
can see the power of a GPU accelerated code.  

PERFORMANCE AND RESULT 
BENCHMARKING 

The performance of GPU kernels and of an equivalent 
CPU code is shown in Figure 1.  

 
Figure 1: Performance improvement by implementing 
GPU kernels.  

As we can see, the code runs about three times as fast 
on an Nvidia Tesla k40 GPGPU card than on an Intel i7 
quad-core and the work can be easily distributed to 
multiple GPU cards on a GPU farm due to the 
independency between the different jobs.  

We did three set of benchmarking between our GPU 
code and the Track3P code as well as with the 
experimental results. In most of cases we saw certain 
level of consistency between the simulation results and 
the experiment observations.  

112 MHz QWR Injector 
The 112MHz QWR cavity has a coaxial fundamental 

power coupler and a choke joint structure cathode stalk. 
Figure 2 shows the section view of the cavity [2]. 

 
Figure 2: Section view of the 112MHz cavity. 

The simulation results from GPU code and Track3P are 
shown in Figure 3 below. We can see consistency between 
the two results. There are three main multipacting bands. 
The first one appears when the gun voltage reaches 40 to 
50 kV. This MP band is located inside the cavity. The 
second one emerges at around 200 kV gun voltage and is 
persistent to about 650 kV. This MP is located in FPC 
structure. The third one is located in the cathode stalk and 
the corresponding gun voltage is from 600 kV to 1 MV. 
The locations of the MP bands are shown in Figure 4.  
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Figure 3: Simulation results of the enhanced counter 
function for the 112 MHz cavity by GPU code and 
Track3P.  

 

 

 (a) (b) 
Figure 4: Location of MP in the 112 MHz cavity given by 
(a) GPU code shown as red dots and (b) Track3P shown 
as white dots. The pair of pictures from top to bottom 
shows the MP at gun voltage equal to 40 kV, 200 kV and 
600 kV respectively. 

All the MP bands were observed in the gun 
commissioning at BNL early this year. Fortunately we 
were able to overcome MP eventually [3].  

2.1 GHz 3-Cell Cavity with Coupling Slots 
The 2.1 GHz normal conducting 3-cell cavity was 

designed for the Low Energy RHIC electron Cooler 
(LEReC) as an energy spread correcting cavity. The 
original design has coupling slots between the 
neighbouring cells. The multipacting study was needed at 
the time and we decided to use this as a benchmark for 
the new GPU code. The simulation results of the 
enhanced counter function are shown in Figure 5 and the 
locations of the MP are shown in Figure 6.  

 
Figure 5: Enhanced counter function for the 2.1 GHz 
cavity 

 
Figure 6: Location of MP in the 2.1 GHz cavity at 
Vg = 240 kV 

As we can see, MP at 240 kV is primarily located in the 
coupling slots. And both code give similar predictions.  

56 MHz QWR Cavity 
The commissioning of the 56 MHz SRF QWR cavity 

has also been done early this year at BNL. This gives us 
an opportunity to cross compare observations of MP 
behavior of this cavity, the previous simulation results 
done by Track3P and the simulations by our GPU code. 
The simulation results of enhanced counter function and 
location of MP are shown in Figures 7 and 8 respectively.  

 
Figure 7: Enhanced counter function of 56 MHz cavity 

The experimental observation shows that at around 50 
kV cavity voltage there was some relatively strong MP 
[4]. This can be seen as the confirmation of the simulation 
result from both GPU code and Track3P.  

 
Figure 8: Location of MP in 56 MHz cavity at Vg=40 kV. 
The MP is located at the connection between the FPC port 
and the cavity back wall.  
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CONCLUSION 
We developed a GPU-based 3D particle tracking code 

for MP simulation. The code gives comparable results to 
Track3P and agrees with the experimental observations to 
a certain level. The code can run on multiple Nvidia GPU 
cards simultaneously and the performance scales near 
linearly with the number of devices.   
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