A DIFFERENT TUNING METHOD FOR ACCELERATING CAVITIES

JACEK SEKUTOWICZ, CHEN YINGHUA\*, WEI YIXIANG\*\* Deutsches Elektronen-Synchrotron DESY, Notkestraße 85 2000 Hamburg 52, FRG

\* on leave of absence from Shanghai Medical Instrumentation College, Shanghai, PR China
\*\* on leave of absence from Tsinghua University, Beijing, PR China

<u>Abstract</u> Superconducting structures ( $\beta = 1$ ) are tuned by deformation of the individual cells. This procedure changes the cell frequency and the coupling factor between cells as well. Both parameters are evaluated in a lumped circuit element model to be used for tuning purpose. A description of the mathematical model and tuning experience are presented.

#### INTRODUCTION

The tuning procedure presented here has been developed for 4-cell 500 MHz superconducting accelerating structures for HERA. The frequency adjustment of each cell is done by inelastic cell deformation. One should reduce the number of tuning steps to avoid unwanted material stresses. We expect that at least 16 cavities have to be tuned in the foreseeable future and then a less time consuming adjustment procedure should be employed. For both reasons we have tried to develope a method which leads in very few steps to the required status of the cavity.

#### MATHEMATICAL METHOD

The method described in this paper is based on "reconstruction" of an uniquely determined matrix, the spectrum  $\lambda_1...\lambda_N$  and eigenvectors  $A_1...A_N$  of which are known. Each monopole passband of N-cell accelerating cavity consists of N resonant modes. Their resonant frequencies and field distributions (e.g. Eacc on axes) are related respectively to the eigenvalues and the eigenvectors of the uniquely determined square matrix M of order N. Elements mij of the matrix M depend on a current status of the cavity i.e. frequencies of the cells and coupling between them. If a lumped element replacement circuit is used for a description of the cavity passband, status of the cavity means: current values of all lumped elements. Functions  $f_{ij}$  relating  $m_{ij}$  to those elements are defined for applied replacement circuit and then solution of the set of equations:

should deliver their values. It is not a trivial problem to solve (1). If N\*N < number of model parameters, usually there is no unique solution. Even for the opposite case but for large N, relevant coupling between next-neighbour cells or mixed capacitive-inductive coupling between the cells, the situation becomes quite complicated. Let us assume that we have a method to solve (1) and to find model parameters for each cavity status, as we will later show for N = 4 and only capacitive coupling between the cells. By the matrix M' we will denote the matrix which corresponds to the adjusted cavity. We can now write equations which have to be fulfilled by the matrix M'. These equations result from the eigenvalue problem of this matrix:

$$M'A_{0} - A_{1}(F_{0})A_{0} = 0$$
 (2)

where  $A_0 = (a_{01} a_{0N})$  is the required field distribution of an accelerating mode. Fo is the required frequency of this mode. Function  $\Lambda_{i}$  is given explicitly together with the functions find for chosen lumped element replacement circuit. We have N equations which must be satisfied by elements  $m_{11}$  of the matrix :

$$\sum_{j=1}^{N} m_{ij} a_{0j} - \Lambda_{-}(F_{0}) a_{0i} = 0 \qquad i = 1...N$$
(3)

If the adjustment of the cavity is accompanied with the change of N selected model parameters:  $P_1 \dots P_N$ , we can rewrite (3) in the new form:

$$\sum_{i=1}^{N} f_{ij}(P_{1}'...P_{N}', other model param.). a_{0i} - \Lambda(F_{0}) a_{0i} = 0$$
(4)

where :  $P'_1 \dots P'_N$  are the values of selected parameters, satisfying equation (4). If we can solve (4), the differences between the initial value of  $P_i$  and the final  $P'_i$  for each of the chosen parameter gives the change of this parameter necessary for the adjustment of the cavity.

#### LUMPED ELEMENT REPLACEMENT CIRCUIT

..

The lumped element replacement circuit of 4-cell is shown in Fig.1

(1)



# Fig.1 Lumped element replacement circuit of a 4-cell cavity $(c_i, l_i)$ - capacitance and inductance of cell no. "i", $c_c$ - coupling capacitor)

The mesh current method applied to currents  $I_1 \dots I_4$  leads to the following eigenvalue problem:

$$\begin{vmatrix} f_{11} & f_{12} & 0 & 0 \\ f_{21} & f_{22} & f_{23} & 0 \\ 0 & f_{32} & f_{33} & f_{34} \\ 0 & 0 & f_{43} & f_{44} \end{vmatrix} \quad A_{S} - 2\Omega_{S}^{2}A_{S} = 0$$
(5)

where: $A_s = (a_{1s}, a_{2s}, a_{3s}, a_{4s})$  and  $\Omega_s$  are respectively eigenvector and angular frequency of the resonant mode "s", and s = 1 ... 4. The functions  $f_{ii}$  are given by formulae:

$$f_{11} = \omega_1^2 \cdot \left(2 - \frac{K_1}{1 + K_1 + K_2}\right)$$
(6.1)

$$f_{22} = \omega_2^2 \cdot \left(2 - \frac{K_2}{1 + K_1 + K_2} - \frac{K_2}{1 + K_2 + K_3}\right)$$
(6.2)

$$f_{33} = \omega_3^2 \cdot \left(2 - \frac{K_3}{1 + K_2 + K_3} - \frac{K_3}{1 + K_3 + K_4}\right)$$
(6.3)

$$f_{44} = \omega_4^2 \cdot \left(2 - \frac{K_4}{1 + K_3 + K_4}\right)$$
 (6.4)

$$f_{ij} = -\frac{\omega_i^2 K_j}{1 + K_i + K_i} \qquad \text{for } |i-j| = 1 \tag{6.5}$$

where:  $K_j = C_c/C_j$  is the coupling factor, and  $\omega_j = 2Nf_j$  is an angular eigenfrequency of the cell no. "j". Function  $\Lambda(F_s) = 8\pi^2 F_s^2$  gives the relationship between eigenvalues and resonant frequencies.

#### MEASUREMENTS OF A: AND RECONSTRUCTION OF MATRIX M

Standard frequency and beadpull measurements give  $\Omega_s$  and absolute values:  $(|a_{15}|, |a_{25}|, |a_{35}|, |a_{45}|)$  of all resonant modes. To find

matrix M the elements of which mij are current values of the functions  $f_{ij}$ , one has to know also a phase relationship between elements  $a_{is}$  of each eigenvector  $A_s$ . For a strongly detuned cavity it may be necessary to measure also phases, but for typical machining imperfections phases are usually similar to those for the well tuned cavity. Phases of all 4 resonances for an adjusted cavity are shown in Table 1. In this Table we assumed the following sequence of resonant modes:  $\Omega_1 < \Omega_2 < \Omega_3 < \Omega_4$ 

TABLE I Phase relationships of the cells at different modes

| Cell<br>Mode | 1 | 2 | 3 | 4 |
|--------------|---|---|---|---|
| Ω1           | + | + | + | + |
| Ωz           | 1 | 1 | + | + |
| Ω3           | 1 | + | + | - |
| Ω4           | + | - | + | - |

Matrix M is uniquely defined by 4 sets of linear equations:

$$\begin{vmatrix} A_{1}^{T} \\ A_{2}^{T} \\ A_{3}^{T} \\ A_{4}^{T} \end{vmatrix} \times \begin{vmatrix} m_{i1} \\ m_{i2} \\ m_{i3} \\ m_{i4} \end{vmatrix} = 2\Omega_{1}^{2}\alpha_{i1} \\ 2\Omega_{2}^{2}\alpha_{i2} \\ 2\Omega_{3}^{2}\alpha_{i3} \\ 2\Omega_{4}^{2}\alpha_{i4} \end{vmatrix}$$
for i = 1...4 (7)

Having all elements  $\boldsymbol{m}_{ij}$  one can compute the current values of the model parameters.

#### THE PARAMETERS AND ACCURACY OF THE MODEL

We can now formulate equations, similary to (1), to find current model parameters. For this we will equate (6) and the corresponding elements of matrix M :

$$m_{ij} = f_{ij} \quad \text{for } |i-j| \leq 1 \tag{8}$$

This set of 10 equations with 8 unknowns:  $\omega_1 \dots \omega_4$ ,  $K_1 \dots K_4$ one can solve in the following way. Six equations from (8) for |i-j|=1 give expressions relating  $\omega_1 \dots \omega_4$ , to the  $K_1 \dots K_4$ 

$$\frac{K_j}{1+K_i+K_j} = -\frac{m_{ij}}{\omega_j^2}$$
(9)

where: |i-j|=1 and  $i,j \le 4$ . We can re-write the remaining four

-852-

equations substituting all fractions  $\frac{K_j}{1+K_j+K_j}$  for right sides of (9). This leads to 4 equations only with 4 unknowns:  $\omega_1, \omega_2, \omega_3, \omega_4$  which can be solved easily:

(10)

where: 
$$s_1 = \frac{m_{12} \cdot m_{21}}{m_{11}} - m_{22}$$
;  $s_2 = \frac{m_{43} \cdot m_{34}}{m_{44}} - m_{33}$ 

$$z_1 = -2 \cdot \left(1 + \frac{m_{12}}{m_{11}}\right)$$
;  $z_2 = -2 \cdot \left(1 + \frac{m_{43}}{m_{44}}\right)$ 

To find  $K_1 \ldots K_4$  from 6 equations, we will use the least square method which seems to be better than the analytic one. Using the analytic method one should select 4 equations from (9). Because of unavoidable measurement errors and finite accuracy of applied lumped element approximation it is better to use a method in which all 6 equations are taken into account. The least square method gives 4 equations which take the form:

$$\frac{\partial \mathbf{r}}{\partial K_{i}} = 0 \cdot i = 1 \dots 4$$
(11)
where:  $\gamma = \sum_{|i-j|=1} \left( \frac{K_{j}}{1+K_{i}+K_{j}} + \frac{m_{ij}}{\omega_{j}^{2}} \right)^{2}$ 

We can re-write them in the matrix form:

$$\begin{cases} r_{1}^{2} + (1 - r_{2})^{2} & r_{1}(r_{1} - 1) + r_{2}(r_{2} - 1) & 0 & 0 \\ r_{1}(r_{1} - 1) + r_{2}(r_{2} - 1) & (1 - r_{1})^{2} + r_{2}^{2} + r_{3}^{2} + (1 - r_{4})^{2} & r_{3}(r_{3} - 1) + r_{4}(r_{4} - 1) & 0 \\ 0 & r_{3}(r_{3} - 1) + r_{4}(r_{4} - 1) & (1 - r_{3})^{2} + r_{4}^{2} + r_{5}^{2} + (1 - r_{6})^{2} & r_{6}(r_{6} - 1) + r_{5}(r_{5} - 1) \\ 0 & 0 & r_{6}(r_{6} - 1) + r_{5}(r_{5} - 1) & (1 - r_{5})^{2} + r_{6}^{2} + r_{6}^{2} \\ \end{cases}$$

$$\times \begin{vmatrix} K_{1} \\ K_{2} \\ K_{3} \\ K_{4} \end{vmatrix} = \begin{vmatrix} r_{2}(1 - r_{2}) - r_{1}^{2} \\ r_{1}(1 - r_{3}) + r_{4}(1 - r_{4}) - r_{2}^{2} - r_{3}^{2} \\ r_{3}(1 - r_{3}) + r_{6}(1 - r_{6}) - r_{4}^{2} - r_{5}^{2} \\ r_{5}^{2}(1 - r_{5}) - r_{6}^{2} \end{vmatrix}$$

$$(12)$$
where:
$$r_{1} = -\frac{m_{12}}{w_{4}^{2}} ; r_{2} = -\frac{m_{21}}{w_{2}^{2}} ; r_{3} = -\frac{m_{23}}{w_{2}^{2}} ; r_{4} = -\frac{m_{32}}{w_{3}^{2}} ; r_{5} = -\frac{m_{34}}{w_{3}^{2}} ; r_{6} = -\frac{m_{43}}{w_{4}^{2}}$$

SRF89G31

1

The formulae (9) and solution of (12) give all model parameters. The applied lumped element circuit describes the cavity passband by tridiagonal matrix. Usually, "reconstructed" matrix M is not the tridiagonal one, because of a finite accuracy of the model and the measurement errors. We can compute back eigenvector and eigenfrequencies of the resonant modes, taking into account only three diagonals of matrix M. Differences  $\Delta F_S$  between the measured values and the computed values will be used as corrections in further computations.

### ADJUSTMENT OF THE CAVITY

The aim of the adjustment is to get for the highest resonant mode a distribution of the electric accelerating field on axes equal  $A_0 = (-1, 1, -1, 1)$  at the required  $\Omega_0$ . Equations (3) take the following form:

$$m_{11}^{\prime} - m_{12}^{\prime} - 2\Omega_{0}^{\prime} = 0$$
  
-  $m_{21}^{\prime} - m_{23}^{\prime} + m_{22}^{\prime} - 2\Omega_{0}^{\prime} = 0$   
-  $m_{32}^{\prime} - m_{34}^{\prime} + m_{33}^{\prime} - 2\Omega_{0}^{\prime} = 0$  (13)  
-  $m_{43}^{\prime} + m_{44}^{\prime} - 2\Omega_{0}^{\prime} = 0$ 

As it was mentioned above the cell frequency adjustment is effected through a change of the cell shape (cell length). The change of length mainly influences electric field and then cause a variation of capacitors  $c_1 \dots c_4$ . Changing capacitor  $c_i$  we get change of  $\omega_i$  and  $\kappa'_i$ . The following formulae show the relation between these quantities:

$$\omega_{i}^{2} = \frac{1}{L_{i}c_{i}} = \frac{c_{c}}{L_{i}c_{i}c_{c}} = K_{i}\omega_{ci}^{2}$$
(14)

where:  $\omega_{ci}^{2} = \frac{1}{L_{i}c_{c}}$ , i = 1...4

are assumed to be the model parameters unchanged by the tuning. Combining (14) and (13) one gets 4 nonlinear equations with 4 unknowns  $K'_1 \ldots K'_4$ :

$$K_{1}'\left[2 - \frac{K_{1}'}{1 + K_{1}' + K_{2}'}\right] + \frac{K_{2}'K_{1}'}{1 + K_{1}' + K_{2}'} = \frac{2\Omega_{0}^{2}}{\omega_{c1}^{2}}$$

$$K_{2}'\left[2 - \frac{K_{2}'}{1 + K_{2}' + K_{3}'} - \frac{K_{2}'}{1 + K_{1}' + K_{2}'}\right] + \frac{K_{1}'K_{2}'}{1 + K_{1}' + K_{2}'} + \frac{K_{2}'K_{3}'}{1 + K_{2}' + K_{3}'} = \frac{2\Omega_{0}^{2}}{\omega_{c2}^{2}}$$

$$K_{3}'\left[2 - \frac{K_{3}'}{1 + K_{2}' + K_{3}'} - \frac{K_{3}'}{1 + K_{3}' + K_{4}'}\right] + \frac{K_{2}'K_{3}'}{1 + K_{2}' + K_{3}'} + \frac{K_{3}'K_{4}'}{1 + K_{3}' + K_{4}'} = \frac{2\Omega_{0}}{\omega_{c3}^{2}}$$

$$K_{4}'\left[2 - \frac{K_{4}'}{1 + K_{3}' + K_{4}'}\right] + \frac{K_{3}'K_{4}'}{1 + K_{3}' + K_{4}'} = \frac{2\Omega_{0}^{2}}{\omega_{c4}^{2}}$$

The solution of (15) gives the new values of  $K_1 ldots K_2 ldots$  and then from (14) required values of  $\omega'_1...\omega'_4$ . We have now two sets of model parameters. The first one  $K_1...K_4$ 

 $\omega_1 \dots \omega_4$  for the initial status of the cavity and the second one  $K'_1...K'_1 | \omega'_1...\omega'_1$  for the tuned cavity. During adjustment of each cell we can observe a change of all

4 resonant frequencies. Replacing stepwise in (6) pairs  $(K_i, \omega_i)$ by  $(K_i, \omega_i)$  we get 4 matrixes the spectra of which show resonant frequencies after each cell has been adjusted. The computed frequencies values should be corrected with  $\Delta F_{s}$  for s = 1...4 We then can control easily adjustment procedure of each cell by simple frequency measurements. This procedure was tested on the copper model of the 500 MHz cavity. Usually one or two steps were necessary to reach flat field profile and required frequency of the accelerating mode.

An example of the whole tuning procedure of the copper model is given below.

### STATUS OF THE CAVITY BEFORE TUNING

TABLE 2

Figure 2 shows field profiles of all 4 modes and Table 2 contains their resonant frequencies before the tuning.

Pi/4Pi/23/4\*Pi Pi Mode F [MHz] 490.803 493.804 497.015 499.022 b) a) 67 68 49 72 64 56 53 47 48 48 18 32 33 26 24 36 211 ្រីរី 7 6 -8,88 -8.10 28 48 60 98 108 120 148 168 108 208 220 248 268 200 300 48 68 88 188 128 148 168 188 288 228 248 268 288 386 . . 28 c) d) SN 52 71 64 46 48 57 50 34 43 28 23 35 2 17 21 ü 14 s 7 -0.04 -0.07 28 48 68 88 108 128 148 168 198 280 228 248 268 288 388 20 40 .60 80 100 120 140 160 180 200 220 240 260 280 300 Ô

Fig.2  $(E_{acc})^2$  of 4 modes : Pi/4 (a), Pi/2 (b), 3/4Pi (c), Pi (d).

## THE TUNING ADVISE (COMPUTED)

## As the required Pi mode frequency we assumed $F_0 = 499.584$ MHz.

#### Resonant made when the cell Lis corrected

Resonans No = 1 is at the F = 490.929 (MIIz) Resonans No = 2 is at the F = 494.287 (MIIz) Resonans No = 3 is at the F = 497.665 (MIIz) Resonans No = 4 is at the F = 499.408 (MIIz) The highest mode norm.  $E_{ecc} = (-1.0000, +0.9333, -0.7960, +0.5981)$ 

Resonant made when the cell 1 and 2 are corrected

Resonants No = 1 is at the F = 490.922 (MHz) Resonants No = 2 is at the F = 404.282 (MHz) Resonants No = 3 is at the F = 497.664 (MHz) Resonants No = 4 is at the F = 499.402 (MHz) The highest mode norm.  $E_{arc} = (-1.0000, +0.9312, -0.7965, +0.5994)$ 

Resonant made when the cell 1, 2 and 3 are corrected

Resonans No = 1 is at the F = 490.919 (MIIx) Resonans No = 2 is at the F = 494.281 (MIIs) Resonans No = 3 is at the F = 497.663 (MIIs) Resonans No = 4 is at the F = 499.401 (MIIs) The highest mode norm.  $E_{acc} = (-1.0000, +0.9306, -0.7947, +0.5984)$ 

Resonant made when all cells are corrected

Resonants No = 1 is at the F = 491.007 (MHz) Resonants No = 2 is at the F = 494.573 (MHz) Resonants No = 3 is at the F = 498.110 (MHz) Resonants No = 4 is at the F = 499.584 (MHz) The highest mode norm.  $E_{acc} = (-0.9983, +0.9988, -1.0000, +0.9994)$ 

#### STATUS OF THE CAVITY AFTER TUNING

Figure 3 shows the field profile of the Pi mode after tuning.





Table 3 gives measured frequencies of all modes and differences  $\mathcal{S}\,\textsc{F=Fmeasured-Fcomputed}\,.$ 

| TABLE | 3 | : | Frequencies | of | all | modes | (as | measured) | after | tuning. |
|-------|---|---|-------------|----|-----|-------|-----|-----------|-------|---------|
|       |   |   | -           |    |     |       | •   |           |       | -       |

| Mode    | Pi/4    | Pi/2    | 3/4*Pi  | Pi      | 1<br>1<br>1<br>1         |
|---------|---------|---------|---------|---------|--------------------------|
| F [MHz] | 491.027 | 494.539 | 498.105 | 499.583 |                          |
| δF[kHz] | 20      | - 34    | - 5     | - 1     | <br> <br> <br> <br> <br> |

#### ACKNOWLEDGEMENT

We want to thank D. Proch and S. Kulinski for helpful discussion and remarks.