### SUMMARY TESLA PARAMETERS AND COMPARISONS WORKING GROUP (GROUPS 1 AND 2)

U. Amaldi, B. Aune, A. Facco, G. Fortuna, G. Krafft, H. Lengeler, P. Mantsch, J. Rosenzweig, R. Sundelin\*, S. Tazzari, M. Tigner\*, T. Wangler, R. Wanzenberg, and T. Weiland

August 22-23, 1991

### I. SUMMARY

This combined working group decided to concentrate on the following subjects on the grounds that they are the most important parameter topics currently identified:

- II. The design formulary
- III. Examples of parameter lists using the design formulary
- IV. The proposed DESY test bed, including:
  - A. Suggested goals, considering selected parameter lists
  - B. Instrumentation needs for such a test bed
- V. Accelerator physics issues, including:
  - A. Q<sub>1</sub> needed for controlling the multi-bunch instability
  - B. The energy spread needed with the selected Q
  - C. Final focus needs
  - D. Top factory service
- VI. Contributions to other groups, including:
  - A. Cost
  - B. RF distribution scheme
- VII. Frequency optimum
- VIII. Specific problems, including:
  - A. Radiation pressure shock excitation of mechanical vibrations
- IX. Comparison to normal conducting approaches, with emphasis on the S-band approach proposed by the DESY-TH Darmstadt Collaboration.

### II. DESIGN FORMULARY

At the First International TESLA Workshop at Cornell University, held July 23 - 26, 1990, James Rosenzweig provided a spreadsheet program (based on R. Palmer's review article) for evaluating the consequences of various parameter choices; this program was invaluable to the functioning of the Parameters Committee at that workshop. For the present workshop, Hasan Padamsee has re-written Rosenzweig's program in MATHCAD, added some

<sup>\*</sup> Co-Chairman

features, and made it available for use. The additional features include cost calculations, klystron optimization, calculation of alignment and vibration tolerances, and electromagnetic backgrounds as calculated by P. Chen. He has also developed a parameter set using this program, and made it available for discussion at the workshop. A report on this program and parameter lists developed using it are attached as Appendix I.

Members of the Parameters Committee very briefly discussed the program, and it was adopted without modification. Should any users of this program detect any deficiencies, it is requested that they bring them to Hasan Padamsee's attention.

### III. EXAMPLES OF PARAMETER LISTS USING THE DESIGN FORMULARY

One change which has evolved since the last workshop is emphasis on a center-of-mass energy of 0.5 TeV. This change has occurred largely to preserve direct comparability to normal conducting designs, which now emphasize 0.5 TeV as a design energy.

In the examples discussed, it was noted by Ugo Amaldi that the power per meter among the various superconducting cases was not constant, unlike the examples considered at the 1990 TESLA Workshop. The reason this is a concern is that it creates a requirement for the development of a number of different klystrons or different power distribution schemes. The reason for the change in the examples provided is that current plans (at DESY, for example) do not call for starting large scale construction until a gradient of 25 MV/m is reached, whereas previous plans had contemplated starting construction of lower energy accelerators (such as a top factory) at lower gradients. It was agreed, with the caveat that large scale construction not start until 25 MV/m is reached, that the present examples are sensible.

It was also noted that the gradients and costs used in the examples are goals, not values which have been demonstrated.

In the 1990 TESLA Workshop, the RF frequency was narrowed down to the 1.5 to 3.0 GHz range, based upon economics and beam dynamics questions. Since that time, DESY has adopted a frequency of 1.3 GHz, based upon the ready availability of power sources at that frequency. Unless someone develops a clever scheme for coupling more cells together in a single resonant structure without creating unacceptable trapped mode conditions, the cost optimum presumably lies near the bottom of the 1.5 to 3 GHz range. Accordingly, the working group accepted 1.3 GHz as a reasonable working value for the examples.

Several other working groups suggested parameter changes:

- 1. The cavity group suggested that the aperture be decreased from 4.6 cm to 3.3 cm. This would have the advantages of higher R/Q and lower  $\varepsilon_p/\varepsilon_{acc}$ , and the disadvantage of higher wakefields, both longitudinal and transverse. Unresolved questions were whether a single bunch transverse instability would occur, whether the increase in HOM power would be tolerable, whether the energy curvature due to the higher longitudinal wakefield would be acceptable, and whether the trapped mode situation is made better or worse by the change.
- 2. It was noted that the assumption of 50% low temperature absorption of higher-

order-mode (HOM) power is probably overly pessimistic, and that 10% is likely to be a more reasonable number (which puts a premium on having good damping of longitudinal HOM's). The relatively high dissipation is caused by the high frequency components of the beam, since  $R_{BCS} \propto t^2$ . It was noted that operating at a lower temperature would decrease the fraction of the HOM power dissipated in the liquid helium, and that this could be part of the temperature optimization. Aside from the thermodynamic optimization, it was pointed out that the diameter of the return transfer line increases rapidly as the temperature is reduced, which increases the cost. Since there is no experience operating a superconducting cavity with such a short and intense bunch, it would be a worthwhile measurement for the DESY test bed.

3. It was also observed that the k<sub>||</sub> value used in the examples may be incorrect when applied to nine cells. Because of the short bunch length, too fine a mesh would be required to calculate the value using existing codes, the fraction of the total volume occupied by the bunch and the immense number of overlapping modes involved make bead-pull measurements impractical, and analytic extensions are approximations with unknown error magnitudes. Accordingly, this would also be a desirable test bed measurement.

Since there was insufficient time to explore the ramifications of adopting any of these changes, none of them were made part of the baseline example; however, this decision was not intended to indicate that these concepts do not deserve further exploration.

### **IV. PROPOSED DESY TEST BED**

The TESLA test bed proposed at DESY (see sketch attached as Appendix II) was recognized as a valuable tool for developing the TESLA concept further. It was noted that an essential part of the program is a substantive effort to continue improving cavity gradients, while design for cost optimization, construction of the test bed, and operation of the test bed proceed in parallel. Cost optimization and gradient improvement are both essential ingredients of the program.

### A. Suggested Goals

Considerable discussion preceded the recommendation of specific goals. It was noted that generation of full-charge, 1 mm bunches is difficult but worthwhile for the test bed. In the injector, superconducting cavities have the disadvantage that they cannot be used inside solenoids, and normal conducting cavities have the disadvantage that they will not tolerate long pulses at high gradients. It was adjudged that production of more than 10<sup>9</sup> electrons per bunch will be difficult. Without the availability of such bunches, some of the desirable goals cannot be reached, but use of a damping ring would qualitatively increase the scope of the test bed.

For injection into a cryomodule, one needs  $\sigma_z$  = 1 mm, and q = 5  $\cdot$  10<sup>10</sup> e<sup>-</sup>. The energy

needs to be greater than a few MeV (the exact value needs to be calculated), and there needs to be flexibility to generate different bunch patterns, with 0.4 to 2.0  $\mu$ s between bunches. It was suggested that it would be useful for the spectator bunch to be off-energy so that it could be easily separated from the primary bunch.

The specific goals recommended are:

- 1. Transfer full pulse power to the beam at the pulse length that would be used in the full-energy accelerator,
- 2. Measure  $\Delta E/E$ , energy stability, and beam path stability. These need to be measured bunch-by-bunch,
- 3. Measure  $\mathcal{E}(t)$ ,  $\phi(t)$  in each cavity unit,
- 4. Measure Q<sub>o</sub> calorimetrically or with a variable coupler,
- 5. Measure the HOM power dissipated in the liquid helium,
- 6. Measure the HOM power coming out the beam pipe,
- 7. Measure the cavity alignment by looking for the beam position which yields a transverse mode null,
- 8. Measure the bunch length,
- 9. Measure the wakefields, both  $\parallel$  and  $\perp$ , with a witness bunch. Compute requirements.
- 10. Measure the static heat leak of the cryostat,
- 11. Measure the temperature profile for each cell and coupler on at least one cavity,
- 12. Look at the X-radiation pattern and spectrum, without beam, using a radiation telescope, and
- 13. Measure microphonics, including radiation pressure.

### B. Suggested Instrumentation

With reference to the above goals, the suggested instrumentation includes:

- 1. Capability to measure RF forward and reflected power for each cavity unit, with recording digital data acquisition; video apparatus for bunch by bunch energy measurement; and feedback stabilization of the RF drive power,
- 2. A spectrometer with a resolution of ~10<sup>-3</sup>; a secondary emission readout; an injector with  $\Delta E/E \le 10^{-3}$ ; and an injector for a witness beam of variable energy and phase,
- 3. Field probes in every cavity unit,
- 4. A variable coupler and/or a calorimeter with resolution < 1 W,
- 5. Use of transition or Cerenkov radiation with a streak camera yielding resolution ≤ 1 ps,
- 6. HOM coupler outputs brought to room temperature for power measurements,
- 7. Parallel beam translation capability,
- 8. An X-ray telescope,
- 9. Thermometry for cavity walls,
- 10. A microwave calorimeter on the beam line (to measure power propagated down the

beam pipe),

- 11. Capability to record  $\mathcal{E}(t)$  and  $\phi(t)$  in the control system,
- 12. Closely spaced beam intensity and position monitors,
- 13. Cavity position transducers referenced to room temperature.

### V. ACCELERATOR PHYSICS ISSUES

The limited length of the TESLA portion of the workshop permitted only the first of the four identified accelerator physics issues to be discussed extensively.

### A. Q<sub>1</sub> needed to control multi-bunch instability

The Accelerator Physics Working Group reported that a HOM  $Q_L$  of ~10<sup>9</sup> is no worse than a  $Q_L$  of ~10<sup>7</sup>, but that a  $Q_L$  of 10<sup>6</sup> is significantly better than a  $Q_L$  of ~10<sup>7</sup>. That working group was continuing to work on quantifying these results.

### **VI. CONTRIBUTIONS TO OTHER GROUPS**

### A. Cost

It was noted that reducing unit costs is just as valuable as increasing gradient. It was also noted that the Cornell group has made extensive measurements of the times required to manufacture cavities, and of the associated costs, including materials. These costs were discussed in more detail by the Structures Working Group.

### **B. RF** Distribution Scheme

It is generally recognized that one of the most significant costs of an RF system is the extensive set of controls and interlocks associated with each cavity structure which has its phase and amplitude actively controlled. The number of cells in a cavity cannot be increased arbitrarily because certain HOM's, due to high mechanical tolerance sensitivities caused by passband "collisions," become trapped. Accordingly, it would be desirable to connect many cavity structures together with an RF manifold. In order for a manifold to cause a group of cavities to have their fundamental modes all behave as one mode, the manifold needs to have a moderate amount of stored energy in it (typically a few percent of the total stored energy). Due to the high gradients planned, this dictates that the manifold be superconducting. An alternative is to use a scheme in which each cavity has an independent mechanical tuner, and in which the vector sum of the voltages in the cavities is regulated; such a scheme requires the addition of these tuners and their controls, and requires the cavities to be mechanically more rigid, but permits the manifold to have a much smaller stored energy, and therefore to be normal conducting. These options need to be studied in much more detail to explore possible designs and

to determine which of them is most cost effective.

### VII. FREQUENCY OPTIMUM

As previously discussed, the optimum frequency was discussed at the 1990 TESLA Workshop, and the consensus was reached that the cost-optimum lay between 1.5 and 3 GHz. It was also agreed that 3 GHz is the beam dynamics limit for a machine that can be constructed with reasonable mechanical tolerances, and the requirements on  $Q_L$  can be relaxed somewhat by going to the 1.5 GHz end of the range. DESY has chosen, for its test bed, a frequency of 1.3 GHz because of the ready availability of RF sources and other components at that frequency. The absence of any simple concepts of how to build a manifold to tie several cavities together indicates that this is a reasonable choice, since the length of cavity with a given number of cells scales as  $f^{-1}$ . Going to an even lower frequency has the disadvantage that the stored energy per meter, which is dumped after each bunch train, scales as  $f^2$ .

### VIII. SPECIFIC PROBLEMS:

### A. Radiation Pressure Shock Excitation of Mechanical Vibrations

Since continuous wave (CW) operation at  $\geq 25$  MV/m would require a very high Q<sub>0</sub> value (ca.  $6 \cdot 10^{10}$ ) in order to keep losses due to RF dissipation in the cavity walls to a tolerable level, pulsed operation is an attractive operating mode for TESLA. Pulsed operation does not have the objectionable features of pulsed operation of a normal conducting structure, however, because the pulse length of a superconducting structure can be much longer than for a normal conducting structure at the same gradient. The long pulse avoids the problems of having to supply energy to fill the structure at a high rate, avoids difficulties in regulating the field in the structure, and avoids parasitic collisions of bunches that are closely spaced. In addition, it is easier to achieve a high ratio of Q<sub>0</sub>(fundamental) to Q<sub>L</sub>(HOM) in a superconducting cavity than in a normal conducting cavity.

One problem presented by pulsed operation at high gradients, however, is that the radiation pressure in a cavity is of the order of 0.012 Torr/(MV/m)<sup>2</sup>. Since this pressure is present only when the cavity is powered, the fairly rapid appearance of this pressure can shock-excite mechanical vibrations in the cavity, which will cause the resonant frequency to "ring." Using some existing cavities to make rough estimates of the magnitude of this effect indicates that some stiffening mechanism will be required to reduce the amplitude to an acceptable level. A calculation of this effect is included as Appendix III. Bars along the sides of the cavity, either as originally used at HEPL, or detachable as presently being developed at HEPL, may be the most practical solution.

### IX. COMPARISON TO NORMAL CONDUCTING APPROACHES

The comparison to high frequency normal conducting approaches (~11 GHz) has been made a number of times in the past, pointing out the severe problems that such approaches have with wakefields, alignment tolerances, and required high peak power RF sources. The choice of a high frequency has been driven by the need to minimize the amount of stored energy dumped after each pulse, where the repetition rate is very high because a very small number of bunches is being accelerated during each pulse to minimize cumulative wakefield effects.

A DESY-TH Darmstadt collaboration has recently proposed a 3 GHz normal conducting accelerator in which many bunches are accelerated in each pulse, and the cumulative wakefield effects are controlled by stagger-tuning the cavity cells for all important modes except the fundamental. Since this is a new concept, the Parameters Working Group decided to compare this approach with the superconducting approach. A summary of the parameters for the normal conducting approach is shown in Appendix IV. The results of the comparison are shown in Appendix V.

In addition to the technical comparison in this table, R. Sundelin presented a cost comparison which has been made to the cost of such an accelerator based <u>solely</u> on the cost of building SLAC. The working group did not have time to evaluate and comment on this presentation. The SLAC unit costs have been adjusted for inflation, but no savings for improvements in available technology have been taken into account; as a result, the calculation should be viewed only as an upper limit for the normal conducting approach. At the KEK Linear Collider Workshop, Greg Loew presented information on the magnitude of cost reductions which can be expected from intervening developments in klystron technology. In addition, no economies associated with the larger scale have been taken into account in the estimate presented here. The costs are based on the actual SLAC construction costs, with various cost components allocated as discussed in Cornell-CLNS-85/709. The way in which the coefficients derived in this report would be applied to an 0.5 TeV center-of-mass normal conducting collider is shown in Appendix VI.

The normal conducting collider has the advantage that it could be built, figuratively starting today. The upper limit for the construction cost at the planned gradient would be  $12.0 \cdot 10^9$  U. S.\$ (FY'91\$), and at a gradient of 6.15 MV/m it would be 7.9  $\cdot$  10<sup>9</sup> U. S.\$ (FY'91\$). It should be noted that the actual cost and the optimum gradient will depend on what technological improvements are incorporated.

The full superconducting linear collider has two reasons it cannot be built starting today. The first is that a gradient of 25 MV/m must be achieved on a reliable basis that is adaptable to mass production. The second is that the design must be improved to reduce costs. If both of these objectives are achieved to the level assumed in the parameters list, the cost of the superconducting linear collider would be approximately  $2 \cdot 10^9$  U. S.\$ (FY'91\$).

In summary, the superconducting linear collider requires additional research, development and design to be viable, and the degree to which the cost goals can be achieved

remains to be determined. This approach has the largest safety margin in its ability to achieve the design luminosity. The high frequency normal conducting linear collider requires additional research, development, and design to be viable, and the degree to which the cost goals can be achieved remains to be determined. The S-band normal conducting linear collider could be built now, but the degree to which its cost can be reduced below the upper limit discussed above remains to be established.

| SRF91101 |  |
|----------|--|

**APPENDIX I** 

# Report on Program and Parameters List Contributed by H. Padamsee

H. Padamsee (for the TESLA Collaboration) **TESLA CALCULATIONS PROGRAM** 

Laboratory of Nuclear Studies, Cornell University

Contents of Report

made available by J. Rosenszweig for the 1st meeting at Cornell in July 1990[1]At this written in the hope that it will be as useful to the parameters group as the orginal For the 2nd TESLA Workshop, there is a need for a parameters program, as was stage Rosenzweig's program is not generally available. Hence this program was program was.

The program is divided into five main sections:

a) Beam Parameters

987

- b) RF Power Calculations
- c) Wall plug powr calculations
- d) Wakelields, vibration and alignment tolerances
   e) Capital and operating cost estimates
  - Capital and operating cost estimates

additions have been made. Data on peak power vs pulse length for available Klystrons The approach is based on the output of the 1st TESLA Workshop DBeam parameter have been incorporated. HOM power has been recomputed. Additional RF dissipation calculations come from the formulas given in Palmer's work[2] Computation of the incoherent pair production from P. Chen's work Was carried out with the help and advice from D. Leenen at DESY. In section (b) and (c) several improvements and during structure filling and decay times have been included.

costs must be taken as very prelimnary. It is hoped that better numbers for costs can from the accelerator physics group with further work by M. Tigner. Section (e) on Sections (d) and (e) are new. Section (d) is based on D. Rubin's summary report be derived at the 2nd TESLA meeting and incorporated.

The program is written in MATHCAD so that formulas used are transparent. All units are MKS and \$

Proceedings of the Fifth Morkshop on KE Snbecondrictivity DESX, Hampars List Contributed by H. Padamsee . Description of the Program . Baseline design exercise (0.5 TeV CM) . Parameters for a 1 TeV Machine . Parameters for a 1 TeV Machine . Variation of Input parameters . On the choice of the RF frequency for TESLA . References

(a) The input quantities for calculating the Beam Parameters are defined below:

Input Parameters - Beam

11

| s |
|---|
| C |
| 8 |
| 5 |
| č |
| ō |
| S |

Description of the Program

The fundamental constants used throughout the program are defined below:

|                                 |                                              | E := 2.5.10      | Beam Energy               |
|---------------------------------|----------------------------------------------|------------------|---------------------------|
| -19                             | i<br>i                                       | 7<br>G := 2.5·10 | Gradient                  |
| ec := 1.6.10<br>-15<br>-15      | Electron Charge<br>Classical electron radius | ا (دو<br>بر<br>ب | Linac Length              |
| re := 2.52.10<br>8<br>8 := 3.10 | Velocity of light                            |                  | No. of Particles/bunch    |
| me := 0.511 10                  | Electron rest mass                           |                  |                           |
|                                 | Fine structure constant                      | 3<br>f := 8·10   | Beam Collision Rate       |
| 137                             |                                              | -3<br>¢z := 2·10 | Bunch Length              |
| -13<br>lc := 3.86·10            | Electron Compton Wavelength/2*pł             | •                |                           |
| Z0 := 377                       | Impedance of free space                      | e× :■ 2.0.10     | Normalized hor. emittance |
|                                 |                                              | -6<br>ey := 1·10 | Normalized ver. emittance |
|                                 |                                              | þx := 0.01       | Horizontal beta           |
|                                 |                                              |                  |                           |

Vertical beta\*

βy := 0.005





Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany

| No. of Coherent Pairs from Beamstrahlung radiation $\int 4 J$ | Npairs := 0.044-N· $\left[ \begin{array}{c} 2 \\ \alpha \cdot \sigma z \cdot \frac{1}{\gamma \cdot \lambda c} \end{array} \right] \cdot \exp \left[ \begin{array}{c} -16 \\ 3 \cdot 1 \end{array} \right]$ | Calculation of Incoherent pair production. $\bar{L}^3$ ] | Constants:<br><b>[1] := 2.6789 [2] := 1.3541 yB := 0.7818 y1 := 0.5772</b> | Detector Properties:<br>-5<br>pt0 := 4-10 c0 := cos(0.1) | Effective Beamstrahlung parameter to agree with Chen's definition: | T':=T<br>12<br>Breit-Wigner Cross-Section: | $ebw := \frac{9}{16 \cdot \pi} \cdot \Gamma 1 \cdot \Gamma 2 \cdot \frac{2}{12} \cdot \left[ e \cdot \frac{e \pi}{r \cdot \lambda c} \right] \cdot \left[ e \cdot \frac{1}{p \cdot 0} \right]$ |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plach Enhancement of the disruption<br>angle                  |                                                                                                                                                                                                            | For R>>1                                                 | Horizontal disruption angle                                                | Vertical disruption angle                                | Diagonal Angle                                                     | Maximum Disruption Angle                   | Beam Crossing Angle                                                                                                                                                                            |
| H6y :=                                                        |                                                                                                                                                                                                            | kx := 0.75 ky := 1.25                                    | 8Dx := 2.N.re.kx<br>Y.ex                                                   | 8Dy := 2·N·re·ky·                                        | وط := "<br>مح<br>مح                                                | 6m := 8Dx                                  | 0.5<br>8c :≖ (8m.8d)                                                                                                                                                                           |



|                             |                            | Pb := N.ec.f.E.2    | Total Beam Power                                                         |
|-----------------------------|----------------------------|---------------------|--------------------------------------------------------------------------|
| Input Parameters - RF Power |                            |                     |                                                                          |
|                             |                            | 8                   |                                                                          |
| 000 =: qu                   | No.of Bunches/Pulse        |                     | Stored Energy/length                                                     |
| -6<br>bs := 1.10            | Bunch separation (s)       | ROQ · w             |                                                                          |
|                             |                            | . 2                 |                                                                          |
| rf := 1.3·10                | RF Irequency               |                     | LUGUED O IN MAICH DEBIN DOWER                                            |
| ROQ := 960                  | Cavity shunt impedance A/Q | R00- 2-L: d         |                                                                          |
| 9<br>1.5·10                 |                            |                     |                                                                          |
| RF Power Calculations       |                            |                     |                                                                          |
|                             |                            | OL<br>OL            |                                                                          |
| υ                           |                            | 3                   | Filing time constant to equilibrium<br>to match beam power               |
| 21 = 1<br>21                | RF Wavelength              | OL                  |                                                                          |
|                             |                            | a: p1               | Power decay time                                                         |
| u ;= 2.1.rf                 | RF frequency angular       | 3                   |                                                                          |
| theam 'm nh·he              | Beam on time               | decay := 1d         | Area under decay                                                         |
|                             |                            | fill := 2 ln(2) To  | To compensate for beam loading                                           |
| d := f·bs                   | Duly Factor                |                     | energy transient in a standing wave<br>structure, fill time before bunch |
|                             |                            |                     | train starts should be as determined<br>by R. Miller [5]                 |
| f<br>rep :=                 | RF Rep rate                |                     |                                                                          |
| -ਸ<br>ਸ                     |                            | trf := tbeam + fill | Total RF on time                                                         |

993

Total Average RF Power: Includes 10000 beam power, dumped structure stored energy and RF power for filling \$/peak RF Watt for klystrons is determined from the following graph derived from klystron catalog information: Cost of Peak power (\$/wall) Log of cost Bandwidth 1000 Pulse Length (jisec) - 3.335 Υŝ 9-۲. 2 AVRI := RI.rep.trf LCrf := 0.708.10g ICEE Crf := 10 218 2 . 5 Ma Kiystron Cost (\$/peak watt) Peak RF Power/meter (using matched conditions). This is also the same as the peak beam power 10000 Klystron peak power Peak Power of klystrons (MWatts) depends on RF pulse length as shown Log of peak power Total Peak RF Power No. of Klystrons 1000 Pulse length (jisec) + 2.304 . <u>0</u> 9-10 LPkly := -0.577.10g ە .10 LPELY := Ppk·L·2 2 = | **°** Pkly := 10 o 5 8 11 Nkly := Ъ К R Peak Power/klystron ( MWatt)

SRF91I01

Pkly



| bcis := $\frac{bcis}{1.55}$ bcil := $\frac{bcil}{1.55}$ | Multicell BCI calculations at Cornel<br>show that loss factor of multicells<br>is 1.55 times less than N x single<br>cett | $\texttt{filla} := \int_0^{\texttt{fill}} \left[ 1 - \overset{-t}{\bullet} \right]_dt$ | Area under fill                               |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|
| kfun := w·──                                            | Loss lactor for the fundamental                                                                                           | d' := rep.(nb.bs + fills + decay)                                                      | Effective duly factor                         |
| 4<br>ktot := if[rf > 2.10 , bcis, bcil]                 | mode alone                                                                                                                | 2 d'<br>Pdise := G ·L·2·<br>ROD-Q                                                      | Tolal Fund. Power al Cryo. Temp.              |
| 12<br>kll := ktot-10 - kfun                             | HOM Loss factor in V/C/meter                                                                                              | 2 theam<br>Pdheam := G · rep·<br>ROQ·Q                                                 | Dissipated power/meter during beam<br>on time |
|                                                         |                                                                                                                           | 2 filla<br>Pdfill := G :rep:<br>Rog-Q                                                  | Dissipated power/meter during fill            |
| Pdump := u.L.2.rep                                      | Tolal Dumped RF Power                                                                                                     |                                                                                        |                                               |
| Pdumpac := Pdump<br>nk                                  | AC power for dumped RF stored<br>energy                                                                                   | 2 decay<br>Fddecay := G · rep<br>Rog.g                                                 | Dissipated power/meter during decay           |
| nc := 1<br>293 - T                                      | Carnot Efficiency                                                                                                         | Petat := 2.L.h                                                                         | Total Static Heat Leak                        |
| nt :∎ nc∙nr                                             | Overall refrigerator efficiency                                                                                           | 2<br>Phom := (kll)·2·L·(N·ec) ·f                                                       | НОМ ромег                                     |
|                                                         |                                                                                                                           | Phomeryo := frac.Phom                                                                  | HOM Power at Cryo Temp                        |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              | Transverse wakes dilute the emiltance of                                                                                                       | a bunch. In a 2 particle model, the tail<br>lacement of the head (x). We want to                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Wakefield and Alignment Toleran</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ices for Quadrupoles                                                                                                                                                         | withesses a national merid with the lait (dx) with the displacement of the tail (dx) with terms of the beta function, the transver             | If the head, is $dx/x$ . This quantity is given se wakes and the energy along the length                                                                                                  |
| 9<br>E0 := 3-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Injection energy                                                                                                                                                             | of the machine. (See D. Rubin's summary<br>of dx/x along the linac to be - 1, allows<br>take the energy scaling of the beta function           | In TESLA proceedings.) Putting the integral<br>us to determine the beta function if we also<br>by i.e. beta increases as the square root of<br>ours ine to determine the number of quads. |
| Energy spread is important for<br>1) Ouadrupole alignment tolerances<br>2) Energy bandwidth of the final focus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                              | the energy. The strength of the quade an<br>The slignment tolerance for the quade the<br>size of the beam at the end of the linac, t<br>quads. | he energy spread and the the number of                                                                                                                                                    |
| Variation in accelerating voltage over th<br>spread. Change in voltage over (+-2) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e length of a bunch leads to an energy<br>bunch length is considered:                                                                                                        | To calculate the transverse wake of a ci<br>Gluckstern given in the TESLA proceeding                                                           | vity/unit length we use the formula from<br>s                                                                                                                                             |
| $e Exf := 2 \cdot \left[ 2 \cdot \pi \cdot \frac{e z}{\lambda} \right]^2$ Wake voltage induced by the head of the test of test | Energy spread from RF wavelength<br>(Rubin-Testa) CcJ<br>he bunch and witnessed by the tail:                                                                                 | 2<br>crit :=<br>5.er.tcell                                                                                                                     | Range for validity of kt formula<br>below                                                                                                                                                 |
| 12<br>10<br>•Ewake := 2·N·ec·ktot·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Energy spreads from wake<br>(Rubin-Tesla)                                                                                                                                    | test := [crit]                                                                                                                                 | Here no is the number of cells                                                                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              | (2682) UTH =: TEA                                                                                                                              |                                                                                                                                                                                           |
| ¢Evake' :=<br>10<br>valwake := [•Ewake']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The wake induced energy spread can<br>be reduced by a factor of 10 by<br>accelerating the bunch ahead of the<br>peak RF voltage C 6 3<br>Choose the larger of the two energy | kt := Z0.c. Lcell val                                                                                                                          | Transverse loss factor<br>(Rubin-Tesla) C 6J                                                                                                                                              |
| rE := max(valwake)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                              | 0 M B<br>3<br>1<br>0 A                                                                                                                         | Injection energy                                                                                                                                                                          |

998



4

| Input Parameters - Cost (\$)                                             |                                   | Cost Calculations             |                                             |
|--------------------------------------------------------------------------|-----------------------------------|-------------------------------|---------------------------------------------|
| 5<br>Cmod := 1.35·10                                                     | Cost of modulators & High Voltage |                               |                                             |
| 3<br>CDR := 20-10                                                        | Cost/meter damping ring           | Linac := Clin.L.2             | Linac Cost                                  |
|                                                                          |                                   |                               |                                             |
| 3<br>Clin := 50·10                                                       | CosVActive meler -LInac           | DR := LDR·CDR·2               | Damping rings cost                          |
| 5.798<br>bp := 0.394.T                                                   | He bath presssure vs T            | Ref := Cref.Pcryo             | Refrigerator Cost                           |
| Cref := 1250 + 3.10 $\cdot \begin{bmatrix} 1 & 1 \\ - & - \end{bmatrix}$ | Cost/watt in He                   | RTc := Crf·RT + Nkly·Cmod     | RF cost                                     |
| 3<br>Cref = 2.57905.10                                                   |                                   | Cap := Linac + Ref + RFc + DR | Total Capital Cost                          |
| El := 0.08                                                               | Cost/Kwatt-hour                   | Op := AC + FDR<br>Op :=       | Operating Cost including damping ring power |
| Life := 4                                                                | Integrated running time (years)   | ,<br>,                        |                                             |

| <u>Baselir. Jesign Exercise (0.5 T</u> r | eV CM)                          |                                       |                                     |
|------------------------------------------|---------------------------------|---------------------------------------|-------------------------------------|
| (All in MKS Units)                       |                                 | Derived Beam and Final Focus Parameli | STA1                                |
|                                          |                                 | 5 <b>.</b>                            |                                     |
| <u>Inpul Parameters - Beam</u>           |                                 | I = 6.5792.10                         | Average Beam Current                |
|                                          |                                 | Ipk = 0.00822                         | Peak beam current                   |
| 11<br>E = 2.5·10                         | Beam Energy                     | ex = 6.39375-10                       | Horizontal Beam Size                |
|                                          |                                 | -7<br>4y = 1.01094.10                 | Vertical Beam Size                  |
| 01.0.2 = 5                               | Createrin                       | Dx = 2.50317                          | Horizontal Disruption Parameter     |
| L = 1.10                                 | Length                          | Dy = 15.83146                         | Vertical Disruption Parameter       |
| 10<br>N = 5.14.10                        | No. of e/bunch                  | HD = 1.90856                          | Disruption enhancement              |
| 3                                        | Beam Collision Frequency        | -4<br>6dx = 5.50033.10                | Maximum Horizontal Disruption angle |
| 4 = 0.002                                |                                 | -4<br> 8d = 3,19687-10                | Horizontal Diagonal Angle           |
| R = 6.32456                              | Aspect Ratio                    | <b>T =</b> 0.03761                    | Beamstrahlung Parameter             |
| ,<br>I                                   |                                 | <b>8 =</b> 0.01762                    | Fractional Energy Loss              |
| cx = 2.10                                | Normalized Horizontal Emittance | Npairs = 0                            | No. of Coherent Pairs               |
| -6<br>cy = 1.10                          | Normalized Vertical Emittance   | incpre = 249.3532                     | No. of incoherent pairs             |
| βx = 0.01                                | Horizontal beta*                |                                       |                                     |
| βy = 0.005                               | Vertical beta*                  | -4<br>8c = 4,19331.10                 | Beam Crossing Angle                 |
| -6<br>bs = 1.10                          | Bunch separation (s)            | 37<br>Lum = 4.96629-10                | Luminosity MKS Units                |

| Darlvad Powar P | RF cell aperture (radius)<br>k11 = 3.0882 | No of Cells/cavity | Assumed klystron efficiency the and a 8.10 | Cryogenic Temperature | Assumed refrigerator efficency zep = 10 | d = 0.008 | Hr irequency<br>d' = 0.01532<br>Static heat leak (watts/m) | -4<br>Fraction of HOM power at cryo. temp £111 = 6.20106-10 | -<br>Residual Q<br>£111a = 2.84622.10 | decay = 4.47312.10 | BCS Q u = 91.96731       | 7<br>Cavily Od<br>Pb = 3.2896-10 | Cavity shunt impedance R/O Polymp = 1.83935.10 | Wavelength Marver - E eacle to | Cell length     |  |
|-----------------|-------------------------------------------|--------------------|--------------------------------------------|-----------------------|-----------------------------------------|-----------|------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|--------------------|--------------------------|----------------------------------|------------------------------------------------|--------------------------------|-----------------|--|
| tmelers -Power  | 0.046                                     | <b>6</b><br>₽      | k = 0.65                                   | r = 2                 | 1r = 0.2                                |           | t = 1.3.10<br>h = 1                                        | frac = 0.5                                                  | 9<br>Qr = 6·10                        | :                  | 10<br>(Jbcs = 2.65268·10 | 9<br>Q = 4.89322.10              | ROQ = 832                                      | λ ≈ 0.23077                    | Lcell = 0.11538 |  |

| nc = 0.00687               | Carnot Etliciency                    | 5<br>Ppk = 2.056·10          | Peak RF Power/meter                 |
|----------------------------|--------------------------------------|------------------------------|-------------------------------------|
| 4<br>Pdiss = 4.70362.10    | Total Fund. Power at Cryo. Temp.     | З<br>Nkly = 1.34568·10       | No. of Klystrons                    |
| Pdbeam = 1.22815           | Watts/m into He during beam on       | pkly = 3.0557.10             | Peak power of klystron              |
| Pdfill = 0.43695           | Watts/m into He during fill          | 9<br>RT = 4.112.10           | Total RF Power                      |
| Pddecay = 0.68671          | Watts/m into He during decay         |                              |                                     |
| Pdhom = 0.83548            | Watts/m HOM power into He            | 7<br>Avrf = 5.83948.10       | Average RF Power                    |
| h = 1                      | Watts/meter into He static           | Breakdown of AC Power        |                                     |
| 4<br>Pstat = 2.10          | Total Static Heat Leak               | 7<br>Pbac = 5.06092.10       | Ac power for beam power             |
| 4<br>Phom = 3.3419-10      | HOM Power                            |                              |                                     |
| 4<br>Phomcryo = 1.67095.10 | HOM Power at cryogenic temp          | ر<br>Pdumpac = 2,82976-10    | AC power for dumped stored energy   |
| 4<br>Pcryo = 8.37457-10    | Total Refrigerator Load              | 4<br>Phomac = 5.14139.10     | AC power for HOM RF                 |
| 7<br>Pacref = 6.0925.10    | Total Retrigerator AC Power          | 7<br>Phomcryoac = 1.21562-10 | AC Power for ref- hom               |
| 7<br>Pacr£ = 8.98381.10    | Total AC power for RF                | Pstatac = 1,455-10           | AC power for rel -static heat leak- |
| 6<br>QL = 3.65371-10       | Loaded Q to match beam               | 7<br>Pdiesac = 3.42188-10    | AC Power for ref rf losses in       |
| BW = 355.80314             | Bandwidth (Hz)                       | c                            |                                     |
| -4<br>Te = 4.47312.10      | Filling time constant to equilibrium | LDR = 5.6·10                 | Length of damping ring              |
|                            |                                      | 7<br>PDR = 2.24-10           | AC Power for damping ring           |

|                              | -Linac                            |                        |               |                     |                  | ) time (years)     | նուղ քուղ                          | ng rìng (\$/m)        |
|------------------------------|-----------------------------------|------------------------|---------------|---------------------|------------------|--------------------|------------------------------------|-----------------------|
|                              | Cost/Active meter                 | Cost/watt in He        | Cost/watt RF  | Cost/modulator      | Cost/Kwatt-hour  | Integrated running | Operating cost for Da<br>(watts/m) | Linear cost for dampi |
| Input Parameters - Cost (\$) | 4<br>Clin = 5.10                  | ے<br>Cref = 2.57905-10 | Crf = 0.07886 | 5<br>Cmod = 1.35.10 | <b>E1 = 0.08</b> | Life = 4           | 3<br>COR = 2·10                    | $cor = 2 \cdot 10$    |
| Total Linac Walt Plug Power  | Beam power /Linac Wall Plug Power |                        |               |                     |                  |                    |                                    |                       |
| 8<br>AC = 1.50763·10         | <b>Eff = 0,2182</b>               |                        |               |                     |                  |                    |                                    |                       |

:

SRF91I01

| <u> VI. Derived Cost Parameters</u> |                                                    | Wakefields. Alignment and Vibi | ration Tolerances              |
|-------------------------------------|----------------------------------------------------|--------------------------------|--------------------------------|
| $\frac{9}{1.10}$                    | Linac Cost                                         | $\mathbf{E0} = 3.10$           | Injection energy               |
| 8                                   |                                                    | <b>β0 = 20.89951</b>           | Initial beta                   |
| DR = 2.24.10                        | uamping ring cost                                  | $\beta f = 190.78559$          | Einal hela                     |
| ₽<br>₽cryo = 8.37457.10             | Total cryogenic heat load                          | 95091 [2]                      | Averate bela                   |
| 8<br>Ref = 2.15984·10               | Refrigerator Cost                                  |                                |                                |
| 5<br>5056.10                        | Peak BF power/m                                    | Ng = 806.54618                 | Number of quads                |
|                                     | RF cost                                            | 13<br>kt = 1.59335.10          | Transverse wake V/C-m^2        |
|                                     |                                                    | ert = 0.00593                  |                                |
| 9<br>Cap = 1.94591·10               | Total Capital Cost                                 |                                | Energy spread from RF          |
| 8                                   |                                                    | ø <b>emake =</b> 0.00315       | Energy spread from wakes       |
| op = 4.85411·10                     | Operating Cost (includes damping<br>ring AC power) | ez = 0.00593                   |                                |
| 8<br>AC = 1.50763-10                | Linac AC Power                                     | -4<br>xrms = 4.54099-10        | Horizontal alignment tolerance |
| TOTAL := Cap + Op                   | · .                                                | -4<br>yrms = 1.0154-10         | Verlical alignment tolerance   |
| 9<br>TOTAL = 2.43132·10             | Total cost                                         | -6<br>Åx = 1.90427.10          | Horizontal vibration tolerance |
|                                     |                                                    | -7<br>Åy = 4.25808·10          | Vertical vibration tolerance   |

Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany

The end

| Parameters for a 1 TeV                      | / Machine                                                  |                                                        | Beam Power              |        | e      | 8       | MWatts      |
|---------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|-------------------------|--------|--------|---------|-------------|
|                                             |                                                            |                                                        | Linac Efficier          | ncy    | -      | 0       | %           |
| As in the first T                           | ESLA workshop, we have a                                   | llowed the final spot size                             |                         |        |        |         |             |
| to shrink to 50 nm for<br>values The source | r the 1 TeV case by using<br>emittances are the same a     | i smaller final focus bela<br>as in the baseline case. | RF Paramet              | ers    |        |         |             |
| however. It is expe                         | ected that techniques for                                  | achieving and colliding                                | °0                      |        | 4      | 6       | 10 9        |
| smaller beams will have                     | ve advanced when the time                                  | is ripe to proceed from                                | RF Frequency            |        | -      | 3       | CI Iz       |
| 05 to 1 TeV. A lum                          | inosity of 10 " is possible                                | in this design exercise,                               | Aperture                |        | 4      | 8       | ЕJ          |
| while keeping the AC                        | power below 200 MWalls.                                    | 10 permit such a high                                  | R/O                     |        | 8      | 2       | Ohms        |
| luminosity the collision                    | energy spread has been                                     | allowed to grow to 12%,                                | RF puise leng           | ť      | -      | 16      | msec        |
| and the beamstranting                       | ) parameter to U.25, Still n<br>Lottos the hunch locath to | ear ine classical regime.                              | Rep rate                |        | ŝ      | -       | Ηz          |
| vertical disruption par                     | rameter near 15. Any s                                     | shorter bunch lenth will                               | Eff. duty fact          | br     | 0      | 8       | %           |
| increase the number of                      | f coherent pairs very fast.                                | Wakelields, quadrupole                                 | RF Dissipatio           | ç      | -      | 78      | watts/m     |
| superconduction machin                      |                                                            |                                                        | Total HOM pc            | ower/m | 2      | 14      | walts/m     |
|                                             |                                                            |                                                        | Total Cryoge            | nic    | -      | 6       | kwatts      |
| TeV Parameters                              |                                                            | Units                                                  | Load                    |        | ,      | ,       |             |
|                                             |                                                            |                                                        | Loaded Q                |        | e,     | 6       | 10 6        |
| Lenath                                      | 16.6 x2                                                    | ka                                                     | Bandwidth               |        | 33     | 15      | Hz          |
| Gradient                                    | 30                                                         | MV/m                                                   | Peak RF Pow             | ner/m  | 27     | 8       | kwall/m     |
| No. of Bunches                              | 800                                                        |                                                        |                         |        |        |         |             |
| Injection Energy                            | e                                                          | GeV                                                    |                         |        |        |         |             |
| CM Energy                                   | 1000                                                       | GeV                                                    | Wakes, Alig             | gnment | IV bus | bration | Tolerances  |
| Luminosity                                  | 10 1                                                       | 0 <sup>33</sup> cds                                    |                         |        |        |         |             |
|                                             |                                                            | 5                                                      | RF Ind. energy          | ~      | 0      | 18      | %           |
| Beam Parameters                             |                                                            |                                                        | spread<br>Wake ind. en. | spread | õ      | 18      | %           |
|                                             | یون<br>(<br>بر<br>(                                        |                                                        | beta initial            | •      | 2      | 6       | E           |
| emilance x.y                                | 2×10 °. 1×10 °                                             |                                                        | beta final              |        | 36     | 6       | E           |
| linal bela x.y                              | 8, 2.D                                                     | mm<br>10                                               | beta average            |        | 24     | 8       | E           |
| No. of e/bunch                              | 8                                                          | 2. 01                                                  | No. of Quads            |        | 8      | 2       |             |
| Collsion Freq                               | 4.1                                                        | kHz                                                    | Vert. Alian. T          | lo     | 33     | 8       | E           |
| Bunch Length                                | 1.1                                                        | ШШ                                                     | Vart Vihratio           | o Tol  | c      |         | . =         |
| Bunch Separation                            |                                                            | hisec                                                  |                         |        | >      | :       |             |
| Beam size vert                              | 50.5                                                       | ШU                                                     | 1.00                    |        |        |         |             |
| Disruption Dy                               | 16                                                         |                                                        | 1000                    |        |        |         |             |
| Beamstr. Param.                             | 0.25                                                       |                                                        | Canital                 |        | •      | 30      | 10.9 4      |
| Coll. Energy Spread                         | 12.2                                                       | %                                                      | AC Wall Dive            | Dower  | 20     |         | Muste       |
| No.of Coherent.                             | 40                                                         |                                                        |                         |        | í      | 2       | C11 B 11 11 |
| Pairs                                       |                                                            |                                                        |                         |        |        |         |             |
| No. of Incoh. Pairs                         | 235                                                        |                                                        |                         |        |        |         |             |

Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany

| Length              | 10                                    | kın         |           |                      |
|---------------------|---------------------------------------|-------------|-----------|----------------------|
| emiltance x,y       | 2×10 <sup>-5</sup> 1×10 <sup>-6</sup> | m·rad       |           |                      |
| final beta x,y      | 10, 5                                 | uu          |           |                      |
| No. of Bunches      | 800                                   |             |           |                      |
| Injection Energy    | e                                     | GeV         |           |                      |
| RF Frequency        | 1.3                                   | Gł          |           |                      |
| Aperture            | 4.6                                   | CIN         |           |                      |
| R/O                 | 832                                   | Ohms        |           |                      |
| AC Wall Plug Power  | 150                                   | Mwalls      |           |                      |
| Beam Parameters     |                                       |             |           |                      |
|                     | W-Factory                             | Top-Factory | 1/2 TESLA | Units                |
| CM Energy           | 200                                   | 250         | 500       | GeV                  |
| No. of e/bunch      | لم<br>ر                               | 8           | 5.14      | 10 10                |
| Collsion Freq       | 45                                    | 40          | 8         | kHz.                 |
| Bunch Length        | 2                                     | -           | 2         | mm                   |
| Bunch Separation    | 0.8                                   | 0.4         | -         | psec                 |
| Beam size vert      | 0.16                                  | 0.14        | 0.1       | шr                   |
| Disruption Dy       | 9.2                                   | e           | 16        |                      |
| Beamstr. Param.     | 0.0054                                | 0.0056      | 0.038     |                      |
| Coll. Energy Spread | 0.12                                  | 0.16        | 18        | %                    |
| No. of Coh. Pairs   | 0                                     | 0           | 0         |                      |
| No. of Incoh. Pairs | 125                                   | 18          | 249       |                      |
| Bearn Power         | 43                                    | 32          | 33        | MWalls               |
| Linac Efficiency    | 28                                    | 22          | 22        | %                    |
| Luminosity          | 3.6                                   | 1.8         | 5         | 10 <sup>33</sup> cos |

ī

Parameter Exploration

Baseline Parameter Set

to create parameter sets according to a strategy outlined by B. Wiik [1] At the June Workshop on TESLA in DESY, this program was used Consider a 10 km active length machine to provide the maximum possible luminosity at 0.5 TeV cm energy, with an AC power limit of consider operating such a machine at lower gradients in Top Factory and W Factory modes. For the Top Factory an additional locus are taken with the same characteristics. This is an attractive 150 Mwatts. A gradient of 25 MV/m can be adopted. Further requirement of  $\partial E/E < 0.001$  is imposed from physics. For the W factory, a Luminosity  $> 2x10^{33}$  is desirable to be an order of In all operating modes the source and final strategy as it calls for a gradient of only 10 MV/m for the Top Factory mode and 12.5 MV/m for the W-Factory mode, both within each with existing cavity preparation techniques. Higher Qo's were Table 1 compares some of the parameters for the three used for the lower gradients. magnitude above LEP II.

1007

operating modes. It was possible to design a Luminosity of  $5 \times 10^{33}$  for the 0.5 TeV mode with a collision energy spread below 2%.

relative cost coefficients, so that some of these conclusions may be revised after the collective judgement of the second workshop is trends shown by these exercises depend on our choices of the Using the<sup>3</sup>0.5 TeV machine as the baseline, lurther exploration of the parameter space has been carried out. Of course the relative incorporated.





| WAKES. JOIOCONCES    |           |             |           |        |
|----------------------|-----------|-------------|-----------|--------|
|                      | W-Factory | Top-Factory | 1/2 TESLA | Unit   |
| RF induced energy    | 0.59      | 0.15        | 0.59      | *      |
| spread               |           |             |           |        |
| Wake ind, en, spread | 0.46      | 0.43        | 0.31      |        |
| beta initial         | 22.6      | 75.9        | 20.9      | E      |
| beta final           | 131       | 490         | 191       | E      |
| beta average         | 87        | 327         | 127       | Ε      |
| No of Quads          | 936       | 264         | 807       |        |
| Vert Align. Tot      | 0.12      | 1.6         | 0.1       | E      |
| Vert. Vibration Tol. | 0.52      | 1.7         | 0.42      | E<br>A |

In the first study, we vary the number of particles per bunch down from the baseline value of  $5 \times 10^{10}$  to  $2 \times 10^{10}$ 







EI

incoherent pairs likewise increase significantly with bunch charge but still superior to normal conducting colliders. Of course the Vertical quadrupole alignment and vibration tolerances get more stringent, but still far relaxed ( > .100 µm) over normal conducting The collision energy spread and the number of multi-bunch effects (not covered by the program) also get worse. versions (< 30 µm).



Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany



Spread %

und x

but existing simulations reported in the 1st TESLA proceedings suggest that the baseline values are acceptable If Qext of the HOM's

Longer bunch lengths are prelerted from the standpoint of AC power, and collision energy spread, but do not have a strong impact on the capital or total cost.

Finally, the choice of collision frequency is dictated essentially by the desired luminosity and the allowable AC power. Attractiveness for physics would suggest shooting for the highest possible collision frequency.



## ON THE CHOICE OF THE RE FREQUENCY FOR TESLA

To make progress on TESLA, it will be important to narrow down the RF frequency as early as possible, so that machine parameters can be optimized, and prototypical hardware made at the appropriate size. At the1st TESLA worskhop, there appeared to be no overwhelming critteria in lavor of 1.5 or 3 GHz. We present arguments here to show that 1.3, 1.5 GHz is definitely preferred.

As pointed out at the TESLA workshop and in other eferences, the advantages of the lower frequency are: a) The BCS losses in the walls of the cavity decrease as 1<sup>2</sup>. Losses can be lowered for the higher frequency by choosing a lower operating temperature, but this would drive up the capital cost of the refrigerator, as well as the operating cost for removing heat from other sources such as static heat leak and higher mode losses.

b) The number of RF input feeds and cryostat penetrations per unit length decreases with f, reducing the capital cost. The same is true for HOM couplers.

c) The longitudinal wakefields decrease as 1<sup>2</sup>, and the transverse wakefields decrease as 1<sup>3</sup>. Wakefield induced energy spread is less, and alignment and vibration tolerances are rolaxed. The advantages offered by the lower wakefields can be alternately realized by reducing the bunch spacing, which lowers the RF pulse length and consequently the RF dissipation for establishing the bunch charge for gains in luminosity. These advantages can bo used to optimize the parameters in design exercises.

d) The higher mode loss factor decreases with frequency, so the higher mode power deposited at liquid helium temperature is less.

e) In principle, with longer wavelengths, longer bunch lengths ( $\alpha_2$ ) are permissible for the same RF curvature related energy spread, which opens up a favorable parameter for adjusting other performance aspects. For example, HOM tosses decrease with increased bunch tength. For the same collision spot size ( $\alpha_x$ ,  $\alpha_y$ ) the beamstrahlung induced energy spread decreases with  $\alpha_2$  and so does the beamstrahlung parameter. This reduces the number of coherent pairs. On the other hand, the number of incoherent pairs.

and the disruption parameters increase with az, so longer bunch lengths must be used judiciously.

The advantages of the higher frequency are:

a) The shunt impedance/unit length is proportional to f, therefore the RF power dissipated in the cells is lower for the same Q0. This lowers both the capital and operating cost, depending on the scenario for Q0.

b) The dumped power when the RF is turned off decreases as (  $t^{+2})$  .

c) The RF fill time and decay time decrease as t<sup>-2</sup>, reducing RF losses.

All arguments in favor of the higher frequency translate to the possibility for savings in operating cost.

Here we show that at the lower frequency, two of the above discussed factors more than offset the savings in operating power at the higher frequency. At the higher frequency, a shorter bunch length is demanded by the need to keep down the wakefield induced energy spread, and to keep the alignment and vibration tolerances from becoming too severe. Also a larger bunch spacing is demanded by multibunch stability considerations. At the shorter bunch length, the increased HOM power at 3 GHz offsets the savings in dumped RF power, and the larger bunch spacing offsets the reduced RF dissipation.

Using the parameters program and the baseline parameters for the 0.5 TeV machine, we changed the RF frequency from 1.3 to 3 GHz. In anticipation of the requirements from multibunch stability, we also increased the bunch spacing from 1 µsec to 2 µsec. Only more detailed simulations can show if this increase is enough.

The figure below then shows how the AC power, capital and total costs change as the bunch length is reduced from 2 min



Note that at 2 mm bunch length, the 3 GHz case appears to have significant advantages over the baseline : lower capital cost (1.74 vs. 1.95 B\$), lower AC power (110 vs. 151 Mwatts).





The RF induced energy spread is 3.1 % vs. 0.6%. which leads to severe alignment tolerances (1.2 µm vs. 102 µm ) and vibration the advantages of capital and operating needed to come close to the tolerances of the baseline case. In this trying to remove larger fractions of the HOM power than the 0.5 These numbers are poorer than for key attractive features of superconducting colliders. As the bunch length is reduced to correct A bunch length of less than 0.5 mm is Most of the increased cost and AC power arise from the increased HOM losses Of course the problem can be attacked by (Recall that in all cases we have taken 0.5 of the HOM But the same technique can case the costs and AC power exceed the baseline. normal conducting colliders sacrificing power to be deposited in liquid helium) then be applied to the 1.3 GHz case. olerances (27 nm vs. 426 nm). cost at 3 GHz evaporate. with shorter bunch length. these serious difficulties, assumed.

One idea that may be proposed for 3 GHz is to lower the operating temperature so that the  $O_0$  is higher. Note that by going to the low temperature, the gains in RF dissipation are lost by the impact of the decreased refrigerator efficiency on the static heat leak and higher mode loss.

In totally separate arguments, we show that for the higher frequency case, the ultimate magnetic field limit is lower than at 1.3 or 1.5 GHz. This fundamental field limit arises mainly from the strong temperature dependence of the BCS surface resistance, which leads to a thermal instability in the detect free caso, the best we may hope to achieve.

2

The Figure below shows the defect free magnetic broakdown limit calculated (from a numerical thermal model program) as a function of RF frequency for two levels of rosidual losses corresponding to  $Q_c = 3 \times 10^{10}$  and  $Q_c = 6 \times 10^9$ . While there is no isignificant penalty for the lower frequency, the maximum field drops from 1920 Oe to 1650 Oe at 3 GHz. Here we have assumed a favorable case for the BCS surface resistance, corresponding to a low surface RRR. The bulk Nb RRR was taken as 250.



thermal instability was encountered in an S band single cell cavity [4] structure geometry, with 40 Oe/MV/m, this translates to an Recently, just this type of the double jeopardy of a high surface RRR along with increased Again the low frequency is insensitive, but at 3 GHz delect free breakdown can be encountered at 1250 Oe. For a good This type of theoretically allowed field at 3 GHz can become as low as 32 MV/m, In the Figure below is considered limitation has also been suggested to explain past maximum fields and clearly demonstrated by thermometry data. circumstances, the reached at 3 Ghz and higher frequencies. [10] accelerating field limit of 31 MV/m. compared to 48 MV/m at 1.5 GHz. certain residual loss. Under accelerating



Thus the maximum achievable field becomes significantly more sensitive to expected variations in the residual surface resistance, and to the possible rise in the BCS surface resistance through increased surface RAR.

In principle these limits would rule out a very high energy (1.5 TeV CM) TESLA machine at 3 GHz, for which a gradient of 40 MV/m was used at the 1st TESLA workshop. At present,

however, with field emission as the predominant limiting mechanism, this argument by itself is not overwhelining

Given the other advantages of the low frequency, as well as the new factors pointed out here, we recommend the selection of 1.3 -1.5 Given the present availability of klystrons at 1.3 Gitz makes the choice clear.

Proc. of the 1st TESLA Workshop, Ed 11. Padamsee, CLNS 90-1029
 In particular see J. Rosensweig, p. 180
 R. B. Palmer, SLAC-PUB-5195 (1990)
 P. Chen, Phys. Rev. Lett. 63, 1796 (1989)
 P. Chen, Phys. Rev. Lett. 63, 1796 (1989)
 R. Miller, SLAC-PUB-3935 (1986)
 D. Rubin in rels. 1 p. 267
 R. Paimer, CERN 87-11, ECFA 87/110 (1987)
 B. Wilk, DESV Workshop on TESLA, June 1991,
 J. Graber et al, Cryogenics 16, 17 (1976)
 P. Fernandes et al Cryogenics, August 1984, p. 433
 C. Lyneis et al, IEEE Trans. Mag-13, 339 (1977).

Relerences



### **APPENDIX III**

### Estimate of Microphonic Shock Excitation by a Radiation Pressure Pulse

Starting with the usual equations for a harmonic oscillator, and ignoring damping, we have

- (1) F = -k x,
- (2)  $d^2 x/d t^2 = F/m = -k x/m$
- (3)  $d^2x/dt^2 = -A\omega^2 \cos(\omega t) = -\omega^2 x$ , and
- (4)  $\omega^2 = k/m$ .

For the Cornell-CEBAF cavities, which are 1.5 GHz and have 3.3 mm wall thickness, the pressure sensitivity is approximately -3 Hz/(MV/m)<sup>2</sup>. This coefficient is larger than would be expected if the radiation pressure were uniform, which it is not. This coefficient yields a frequency shift of 1875 Hz at 25 MV/m. The most easily excited mechanical modes of the cavity have frequencies around 60 Hz. That these modes are the relevant ones for RF frequency shifts has been verified by observing ponderomotive oscillations of the cavities when the incident power at fixed RF frequency, rather than the cavity field, is regulated. Thus  $f \approx 60$  Hz, and  $\omega \approx 377$  Hz.

If we now define F = 1 as the value which, in equilibrium, causes a 1875 Hz RF frequency shift, and apply F = 1 as a step function, the undamped solution is

(5)  $f_{RF} = f_{RF_0} - 1875 (1 - \cos(\omega t)).$ 

Since the RF pulse will typically be short compared to  $1/\omega$ , the maximum "velocity" of the cavity walls will occur at the end of the RF pulse. Although this equation is not difficult to solve exactly, the physical process is more transparent if the following approximation is made. Using the definition of F above, and defining x in units of the frequency shift, in Hz, that it produces, yields k = 0.000533, and m =  $k/\omega^2 = 3.752 \cdot 10^{-9}$ . Assuming an RF pulse length of 0.00142 seconds, and approximating its effect as an impulse yields

(6)  $v = F t/m \approx 0.00142/3.752 \cdot 10^{-9} = 378 \text{ kHz/second} = A \omega$ .

 $\therefore$  A = (A  $\omega$ )/ $\omega$  = 378,000/377 = 1004 Hz, which is approximately half of the steady state effect. For a loaded Q of 3.9  $\cdot$  10<sup>6</sup>, the bandwidth, f/Q<sub>L</sub> = 1.3  $\cdot$  10<sup>9</sup>/3.9  $\cdot$  10<sup>6</sup> = 333 Hz. The amplitude, A, of the microphonic oscillation is therefore approximately 3 times the bandwidth. An acceptable maximum amplitude is approximately 0.25 of the bandwidth, so a factor of  $\geq$ 12 reduction in the microphonic amplitude is needed through stiffening methods. Enough damping should be present so that resonant build-up with multiple pulses is not an additional problem.

### APPENDIX IV

### Parameter List for a 3 GHz, 0.5 TeV Normal Conducting Linear Collider Under Consideration at DESY

## List of Parameters

| General Parameters                          |                                     | 100 mA                      | 300 mA                      |
|---------------------------------------------|-------------------------------------|-----------------------------|-----------------------------|
|                                             |                                     |                             |                             |
| energy                                      | GeV                                 | 250 + 250                   | _                           |
| luminosity (incl. crossing angle,           |                                     |                             |                             |
| no enhancement from disruption)             | $(\mathrm{cm}^2 \mathrm{sec})^{-1}$ | $\bullet 2.4 \cdot 10^{33}$ | $\bullet 1.4 \cdot 10^{33}$ |
| active length                               | m                                   | ● 29 411                    | -                           |
| repetition rate                             | Hz                                  | ●50                         | -                           |
| number of particles per bunch               |                                     | • 7·10 <sup>9</sup>         | ● 21·10 <sup>9</sup>        |
| Particle Production and Dampin              | ng Rings                            |                             |                             |
| damping ring energy                         | GeV                                 | 3.15                        | -                           |
| damping time                                | msec                                | 3.8                         | -                           |
| ring circumference                          | m                                   | 650                         | _                           |
| invariant emittance $\gamma \epsilon_{x,y}$ | $m / 10^{-8}$                       | 410/4                       | 1000/100                    |
| energy spread                               | %                                   | 0.112                       | - '                         |
| rf-voltage                                  | MV                                  | 5.0                         | -                           |
| rf-frequency                                | MHz                                 | 469                         | -                           |
| bunch length $\sigma_s$                     | mm                                  | 3.6                         | · _ ·                       |
| wiggler peak field                          | $\mathbf{T}^{1}$                    | 2.0                         | -                           |
| wiggler period length                       | m                                   | 0.20                        | -                           |
| wiggler total length                        | m                                   | 84                          | -                           |
| dynamic acceptance                          | m                                   | $4.10^{-6}$                 | -                           |

| Main Linac                  |           | 100 mA    | 300 mA                                 |
|-----------------------------|-----------|-----------|----------------------------------------|
|                             |           |           |                                        |
| wave length                 | m         | 0.10      | · _                                    |
| average shunt impedance     | MQ/m      | 53.6      | -                                      |
| attenuation                 | neper     | 0.57      | -                                      |
| structure length            | m         | •6        | -                                      |
| group velocity              | % of c    | 4.1–1.3   | -                                      |
| filling time                | $\mu$ sec | 0.825     | -                                      |
| maximum energy width (peak) | %         | $\pm 0.6$ | $\pm 1.27$                             |
| klystron power              | MW        | •112      | •145                                   |
| number of klystrons         |           | 2451      | -                                      |
| structures per klystron     |           | 2         | -                                      |
| klystron efficiency         | 8         | 45        | -                                      |
| total rf-pulse length       | μsec      | 2.8       | -                                      |
| zero current energy         | GeV       | 540       | 613                                    |
| mean power                  | MW        | 86        | 110                                    |
| rf-peak power               | MW        | 275 000   | 355 000                                |
| average pulse current       | mA        | 100       | 300                                    |
| current pulse length        | μsec      | 2         | -                                      |
| number of bunches per pulse |           | 172       | -                                      |
| bunch to bunch distance     | m         | 3.2       | -                                      |
| bunch length (rms)          | mm        | • 0.2     | • 0.5                                  |
|                             |           |           | ······································ |

| Final Focus and Interaction             |      | 100 mA             | 300 mA     |
|-----------------------------------------|------|--------------------|------------|
|                                         |      |                    |            |
| $\beta$ -function at IP $\beta_{x,y}^*$ | mm   | 3, 0.3             | 5, 0.8     |
| beam dimension at IP $\sigma_{x,y}^{*}$ | nm   | <b>●</b> 169, 5.48 | •316, 40   |
| aspect ratio                            |      | ●30.8              | •8         |
| crossing angle                          | mrad | $\pm 0.8$          | -          |
| disruption parameter $D_x$ , $D_y$      |      | 0.55, 16.9         | 1.1, 8.4   |
| luminosity enhancement                  |      | 1.7                | 1.6        |
| maximum disruption angle                | mrad | 0.36, 0.10         | 0.57, 0.29 |
| dilution parameter                      |      | 0.38               | 3.5        |
| critical energy of beamstrahlung        | GeV  | 80                 | 47         |
| mean number of beamstrahlung            |      |                    |            |
| photons per particle                    |      | 1.6                | 2.3        |
| critical radiation parameter            |      | 0.214              | 0.126      |
| mean fractional energy loss             |      | 0.07               | 0.06       |
| mean fract. reduct. for c.m. energy     | ~    | 0.03               |            |
| momentum acceptance                     | %    | $\pm 1.8$          |            |
| Efficiencies                            |      | 100 mA             | 300 mA     |
| $rf \longrightarrow beam$               | %    | 17:7               |            |
| wall-plug $\longrightarrow$ beam        | %    | y : 10-1           | 6 • 11 14  |

Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany

### APPENDIX V

### Comparison of Advantages and Disadvantages of a 3 GHz Normal Conducting Linear Collider and a Superconducting Linear Collider

|        | Adva         | Intage       |                                                                             |
|--------|--------------|--------------|-----------------------------------------------------------------------------|
| Number | NC           | æ            | Characteristic                                                              |
| 1      |              | √            | Lower transverse wake                                                       |
| 2      |              | $\checkmark$ | RF sources do not push state-of-the-art                                     |
| 3      |              | $\checkmark$ | Potential for performance exceeding design specs                            |
| 4      |              | $\checkmark$ | Higher level of interest in technology                                      |
| 5      |              | $\checkmark$ | Traveling wave structure has aperture defined by<br>needed group velocity   |
| 6      |              | $\checkmark$ | Potential for reducing beam diameter further for scaling to higher energies |
| 7      |              | $\checkmark$ | Luminosity is more conservative                                             |
| 8      |              | $\checkmark$ | Has the capability to have small $\Delta E/E$                               |
| 9      |              | $\checkmark$ | RF feedback is more applicable to longer pulses                             |
| 10     | $\checkmark$ |              | Structures with the required properties are an existing capability          |

### APPENDIX VI Application of Cost Coefficients to a 3 GHz, 0.5 TeV Normal Conducting Linear Collider

This appendix contains an evaluation of the cost of a 3 GHz normal conducting linac with a center-of-mass energy of 0.5 TeV. As stated in the text, these numbers are an upper limit, based on the assumptions that there are no technological improvements since SLAC was built, and that there are no economies of scale relative to SLAC. The actual costs of building SLAC, and typical power costs for operating it continuously for ten years, have been divided into terms which have various dependencies on the gradient, the energy, and the pulse repetition frequency; these coefficients (except for  $C_{5'}$ , which makes the assumption that a total of two damping rings are used) are derived in Cornell-CLNS-85/709, and are in 1985 U. S. \$.

The total construction plus ten year electrical power operating cost for the accelerator is given by

(1)  $C = C_1 E/E + C_2 E E + C_3 E E f_P + C_4 N E f_B + C_{5'}$  Circ,

where C is the cost in 1985 dollars, the C<sub>i</sub>'s are the coefficients, E is the energy of each of the two beams in eV,  $\varepsilon$  is the gradient in V/m, f<sub>P</sub> is the RF pulse repetition frequency in Hz, f<sub>B</sub> is the bunch repetition frequency, N is the number of particles per bunch, and Circ is the damping ring circumference in meters. The coefficients are \$70,082, \$1.820 \cdot 10^{-9}, \$6.352 \cdot 13^{-12}

 $10^{-13}$ , \$2.243  $\cdot$   $10^{-18}$ , and \$3.3  $\cdot$   $10^{5}$ , respectively, with appropriate units for each.

Using the parameters for the DESY normal conducting proposal yields

- (2)  $C(1) = 70,082 \cdot 2.5 \cdot 10^{11}/1.7 \cdot 10^7 = 1.031 \cdot 10^9$ \$.
- (3)  $C(2) = 1.820 \cdot 10^{-9} \cdot 2.5 \cdot 10^{11} \cdot 1.7 \cdot 10^7 = 7.735 \cdot 10^9$ \$.

(4)  $C(3) = 6.352 \cdot 10^{-13} \cdot 2.5 \cdot 10^{11} \cdot 1.7 \cdot 10^7 \cdot 50 = 0.135 \cdot 10^9$ \$.

- (5)  $C(4) = 2.243 \cdot 10^{-18} \cdot 7 \cdot 10^9 \cdot 2.5 \cdot 10^{11} \cdot 8600 = 0.034 \cdot 10^9$ .
- (6)  $C(5) = 3.3 \cdot 10^5 \cdot 650 = 0.215 \cdot 10^9$ \$.

The costs reflected in (2), (3), and (6) are capital costs, and those in (4) and (5) are ten year operating costs.

The construction cost for the accelerator, in 1985 U. S. \$, is thus 8.981  $\cdot$  10<sup>9</sup>, and the 10-year electric power cost is \$0.169  $\cdot$  10<sup>9</sup>.

If one now escalates to FY'91\$ at 5%/year, the numbers become  $12.035 \cdot 10^9$  1991 U. S. \$ for construction, and 0.226  $\cdot 10^9$  1991 U. S. \$ for 10-year continuous electric power.

Instead of using the specified gradient of  $1.7 \cdot 10^7$  V/m, one can use the cost-optimum gradient by taking the derivative of equation (1). The optimum is given by

1020

(7)  $\varepsilon = (C_1/(C_2 + C_3 f_P))^{0.5} = (70082/(1.820 \cdot 10^{-9} + 6.352 \cdot 10^{-13} \cdot 50))^{0.5} = 6.152 \cdot 10^6$  V/m. Note that this is close to the gradient at which SLAC was originally built. The values for the various cost components then become

- (8)  $C(1) = 70,082 \cdot 2.5 \cdot 10^{11}/6.152 \cdot 10^{6} = 2.848 \cdot 10^{9}$ \$.
- (9)  $C(2) = 1.820 \cdot 10^{-9} \cdot 2.5 \cdot 10^{11} \cdot 6.152 \cdot 10^{6} = 2.799 \cdot 10^{9}$ .
- (10)  $C(3) = 6.352 \cdot 10^{-13} \cdot 2.5 \cdot 10^{11} \cdot 6.152 \cdot 10^{6} \cdot 50 = 0.049 \cdot 10^{9}$ .
- (11)  $C(4) = 2.243 \cdot 10^{-18} \cdot 7 \cdot 10^9 \cdot 2.5 \cdot 10^{11} \cdot 8600 = 0.034 \cdot 10^9$ .
- (12)  $C(5) = 3.3 \cdot 10^5 \cdot 650 = 0.215 \cdot 10^9$ \$.

Escalating these numbers as above yields  $7.856 \cdot 10^9$  1991 U. S. \$ for the construction cost, and  $0.111 \cdot 10^9$  1991 U. S. \$ for the 10-year continuous operation electric power cost. It is emphasized again that these numbers assume no savings relative to SLAC from intervening technological improvements, nor from economies of scale, and should therefore be viewed as an upper limit.