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Abstract: 

A semi-analytical approach is described here giving the quench field level in a superconducting RF cavity. This 
thermal resolution using the Hankel transform function might be interesting as it immediately points out the influence of 
various parameters involved. In particular, quench field is plotted as afunction of RRR and thickness of the material and, 
in the case of a local defect, the importance of its size and resistivity is shown. 

Introduction 

One of the basic limitation of superconducting cavities 
is their thermal instability called "quench" leading to a 
transition towards the normal state. This is certainly an 
important issue for future high energy colliders requiring 
high accelerating gradients. In principle, for a perfect 
superconductor, there is a theoretical limit given by the 
critical magnetic field. But in real cavities, it appears that 
the quench field is somewhat lower than this theoretical 
limit. As in most elliptical (,8=1) cavities, the ratio 
between the accelerating field Eacc and the magnetic field 
on the equator is almost the same, 

B[mTJ = 4. Eacc(1\1V/mJ 

all the results will be given for obvious practical reasons 
as a function of the accelerating gradient Eacc. For 
niobium, the ideal critical field is BcO = 190 mT @T=OK, 
and using the temperature variation of the critical field 

Be = BcO [ 1 - (T /Te)2] , one can deduce the maximum 
accelerating field achievable for niobium cavities to be 
Eacc = 45 MV/m at T=1.8K (this assuming no heat 
generation and an ideal cooling). Heat losses deposited 
at the inner surface of the cavity and thermal resistances 
in the niobium sheet and at the interface with the helium 
bath will reduce this ideal quench limit value. 

Generally, the quench field value is calculated by 
using finite elements computer codes [1,2,3]. A different 
simplified approach is described here aiming at trying to 
give a better feeling of what might be the importance of the 
different parameters involved in the system stability. After 
describing why thermal instability occur in the uniform 
case (without local defects), the quench field limit is shown 
to be in that case quite close to the ideal one given above. 
Then, one can assume that there is locally a "defect" either 
a normal inclusion or a degraded niobium zone having bad 
superconducting properties. The variation of the quench 
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field will be given as a function of the defect size (assumed 
for simplicity to be a flat disk of diameter q,=2a), the RRR 
of the bulk niobium and the thickness e of the sheet. 

Thermal analysis 

Let us consider an infinite plane sheet of thickness e 
having one face in vacuum and the other in contact with 
a helium bath. On the vacuum side, a given amount of 
heat flux q [in W/m2] is deposited which flows through 
the bulk towards the helium bath. 
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Figure 1- Thermal scheme of a superconducting niobium cavity. 

Thus, the vacuum face will have the highest temper
ature T2, while the temperature Tl of the helium face will 
be higher than the bath temperature T b due to the interface 
cooling mechanism (which is Kapitza phenomenon in the 
case of a superfluid bath T<2.17K @P=5Omb) : 

If K is the thermal conductivity of the solid, the 
general equations can be written as follows (assuming 
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no heat generation inside the bulk) : 

q = -K gradT 
{ d· 0 zvq = 

The problem will be to determine the "hot" face 
temperature T 2 from which will strongly depend the 
amount of deposited heat flux qz(z=O). 

Heating 

RF Losses 

Of course, the main source of heating is due to the 
surface resistance Rs, the dissipated heat flux for a given 
surface magnetic flux B beeing 

q = _1_ R B2 
2J.l2 s 

The surface resistance can be splitted in two parts : 
One is the standard BCS resistance which temperature, 
RRR and frequency dependence are well understood. But 
there is no general agreement concerning the remaining 
part called "residual" resistance which is not predictible. 
The BCS part is predominant at high temperatures (above 
2K at 1.5GHz) whereas at low temperatures, only the 
residual resistance remains (BCS resistance should be 
zero at OK). Causes of non-zero residual resistance 
are identified as static magnetic flux pinning [4], grain 
boundaries [5], residual lOOK effect [6] or impurities [7]. 
Inhomogeneities and surface defects may also contribute 
to part of these residual losses. Nevertheless, the residual 
resistance can be made quite small (a few nanoOhms) and 
should not affect the quench limit value in an important 
way. 

The BCS part is of major importance. In a previous 
paper [7], it has been shown that the real order parameter 

of superconductors is roughly varying as 11 = 1 - (f) 3 

The BCS surface resistance can be calculated using 

R - -n ( i WJ.lA ) s - ,,,e 
v'11 + iWT(1-11) 

where W is the pulsation of the electromagnetic field, A 
the London penetration depth and T the normal collision 
time of electrons. 

Electron Emission 

Field emitted electrons from the cavity surface can be 
accelerated in the RF field and impinge on another point 
with high energies (order of MeV). This can be another 
source of heating locally the inner surface. Usually, when 
electron emission occur, the field in the cavity will be 
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limited by the amount of available input power. But if 
the corresponding power is dissipated in a thin meridian, 
an "electronic" quench might sometimes be observed. As 
this obviously is not an intrinsic phenomenon, it will be 
assumed in the following that the cavity do not show any 
field emission. 

Cooling 

The heating previously described lead to a certain 
amount of deposited heat flux q on a so thin layer of the 
inner face that it can be considered as deposited on the 
surface z=O. The heat will propagate in the sheet and be 
evacuated by the helium bath assumed to be at a uniform 
temperature Tb. Two thermal gradients appears: the first 
is due to the finite thermal conductivity of the sheet, and 
the other to the cooling mechanism at the solid/liquid 
interface. 

Conduction resistance 

The ability of heat transport in a solid is given by the 
value of its thermal conductivity K. For superconductors, 
heat transport is essentially ensured by normal conducting 
electrons so K is strongly increasing with temperature 
(A good superconductor is a bad thermal conductor). It 
can be easily understood that the electronic part will be 
proportionnal to the electrical conductivity and hence the 
RRR [8,9] : 

Kelec ex (1 - 11) .RRR 

There is also a phonon contribution to the thermal 
conductivity which only prevails at low temperatures 
(T<2.5K) thus resulting in a bump in the K(T) curve 
more or less important depending on the grain size of the 
material. In practice, it won't have a great influence on the 
quench field level at which the corresponding temperature 
of interest is in all cases higher than 3K. 

Interface resistance 

Heat flowing through a solid/liquid interface results 
in a temperature discontinuity (~T) roughly proportionnal 
to the flux for low fluxes [10] 

~T = .!L 
hk 

In the case of the superfluid helium, Kapitza conduction 
writes q = J:t (T4 - T:) hence hk ~ hoTf. Above a 
critical flux q/b, the liquid boils just near the surface 
decoupling thermally the solid from the bath : this 
is the film boiling limit. Experimentally, q/b ranges 
between 5000 and 20000 W/m2 [11]. An average value 
of 10000 W 1m2 will be taken. 
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The uniform case 

This is a one-dimension resolution along the z axis. 
If qs is the unifonnly deposited heat flux, then the "cold" 

face temperature is Tl = n + qs (~k). In principle, the 
"hot" face temperature T should be given by integrating 
/'i, ¥z = -qs as /'i, depends on z via the temperature profile 
T(z). But, one can assume a mean value for /'i, (for example 
taking an average temperature at z=e/2) which greatly 
simplifies to (T - T1 ) = qs (~) (this approximation will 
be justified later on as it will be shown that the temperature 
difference between the hot and cold face is quite small 
even at the quench limit). Thus, the temperature should 
be solution of the equation : 

T - Tb = qs(T) {-;- + hI } 
"'(T) k 

o 

Figure 2- Graphical resolution in the uniform case 

There, instability can be easily understood. If one 
plots the right hand side exponentially increasing function 

of temperature J(T) = qs(T) {";T) + ;k }, it can be 
graphically seen that, depending on the values, there 
can either be three intersecting points with the line (T
Tb) or only one. In the first case, there is one stable 
superconducting solution, an unstable one, and one stable 
nonnal solution. In the second case, only the stable nonnal 
solution remains. A quench will occur when the curve of 
f(T) will be higher than the line (T-Tb) for T<Te. As a 

consequence, in order to avoid the quench, one should try 

to lower f. That means : 

- Increase the thennal conductivity /'i, (Le. increase RRR) 
- Decrease the thickness sheet e. 
- Increase the Kapitza conductance hk . 

- Decrease the surface resistance Rs. 

The thermal instability described here above does 
not take in account the magnetic field limit. It can take 
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place even if there were no critical magnetic field. But 
if the function f is small enough, one can hit the critical 
magnetic field before the thermal instability crossing the 
(B,T) phase line (see figure 3). 
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Figure 3- Themo-magnetic transition (Quench) 
in the (B.T) phase diagram of a superconductor 

This case is calculated for a standard niobium sheet 
where the quality factor Qo has been plotted as a function 
of Eace (F=1.3GHz, Rresidual=7.5nn, RRR=3(0) (fig. 4). 
At T=1.8K, the quench field is found to be Eaee= 42MV/m. 
This is very close to the ideal value (45MV/m) indicating 
that, in the defect-free case, very high gradients should 
be achieved. 
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Uniform Case (Without defect) 
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Figure 4- Quality factor of a cavity as a function 
of accelerating field in the free-defect case 
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The defect case 

It is assumed here a local flat zone of diameter 
CJ>=2a where the heat deposited flux q differs from the 
uniform surface. The problem is a 2-dimensional one 
using cylindrical coordinates (r,z). 
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Figure 5- The 2-dimensionnal defect case. Heat 
is assumed to be deposited on the inner surface, 

The hottest point is therefore located at (r=O,z=O). 
Here again, taking an average value for Ii results in writing 
the general equation inside the sheet as 

with the following boundary conditions 

qz(Z = 0) = q(r) 
{ 
qz(z = e) = hk [T(r,e) - n] 

Warm side 

Cold side 

The use of the Hankel transform (see Appendix) 
appear to be very helpful giving directly the analytical 
solution as an integral form. Writing q(k) as the Hankel 
transform of the function [q(r)-qs] (the uniform heat flux 
qs have been separated) 

00 

q(k) = J r Jo(kr) [q(r) - qs] dr 

o 

Then, the temperature in the sheet is given by 

00 
T(I', z) = 1 k Jo(h) ..JQL [sh[k(e - z)] + ~] dk 

ch(ke) " k hk 
o 

[
e - 7 1 ] 

+q. -.-- + -, + Tb 
" lk 

and, consequently, the heat fluxes are 

00 
1 q(k) 

qz(I', z) = k Jo(h) -- ch[k(e - z)) dk + q. 
ch(ke) 

o 
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00 
qr(l', z) = 1 k 2 J 1(h) ..JQL [sh[k(e - z)] - :::.] dk 

ch(ke) k hk 
o 

One immediately recognizes the uniform solution 
given above when q(k)=O with 

T( r, z) = qs [ e~z + ,:J + n. 
In the general case, the temperature of the hottest 

point can be determined as 

100 q(k) [sh[ke] 1 ] [e 1 ] 
T max = k -, (k ) --k- + -, dk + q. - + -, + Tb c l 'e /'i,' lk /'i, lk 

o 
Quench can occur for three reasons : 

a) A thermal breakdown, similar to the one described 
in the uniform case, if the hot spot temperature Tmax 
exceeds the critical temperature Te. 

b) A magnetic breakdown if the magnetic field 
exceeds the critical magnetic field Be(T). Note that due to 
the temperature rise, this local field can be substantially 
lower than the uniform case one. 

c) A cooling breakdown when the heat flux on the 
cold side exceeds the film boiling limit qfb 
(qzCr = O,z = e) > qjb). 

The resistive defect solution 

Let us consider here a resistive defect having a 
uniform surface resistance. Then the generated heat flux is 
constant q(r)=qn for (r<a) and q(r)=qs for (r>a). Of course, 
one must bare in mind that qn is orders of magnitude 
higher than qs. 

o 

Figure 6- Flux profile in the case of a pure resistive cylindrical defect.. 

As shown in the appendix, the Hankel transform in 
this case writes as 

(k) - 2( _ ) [h(ka)] q - a qn qs k 
a . 

giving in a straightforward way 

)( U)2 (100 Jl(X~) [e shx 1] dX) T - Tb = (qn - q. - J.' -- + - -
e 0 x(~) /'i, X hk chx 

{ (00) U 2 J 1 (X~) dx 
qz(r=o,z=e)=q.+(qn-qa)(;) Ix x(7) chx 
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At that point, one have to distinguish between two 
cases. 

- If the defect is bigger than the sheet thickness 
(a»e) , then nearly all the flux qn will flow to the cold 
side. Therefore, one will rapidly hit the film boiling limit 
(Quench c) at low fields. 

- If the defect is small compared to the thickness 
of the sheet (a«e) -which should be the general case 
in a real cavity -, then the temperature rise will scale 
roughly as 

(a)2 [e 1] - -+- q e K, hk n 

Again, as in the uniform case, the conclusions 
concerning K. and hk remain valid : One must try 

to increase the thermal conductivity as well as the 
Kapitza conductance. Figure 7 show as an example the 
quench field as a function of RRR (K, is approximately 
proportionnal to the RRR). 
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Figure 7- Quench field as a function of RRR. 

But as opposed to the uniform case, here appears 
the (a/e)2 term showing the square dependence upon the 
defect size. Indeed, in figure 8, the quench field is plotted 
versus the diameter of the defect CP=2a for a given normal 
resistance (Rn = ~). Big defects can drastically 
reduce the quench field (in that example, a lOOpm defect 
induces a quench at a field as low as lOMV/m). Therefore, 
if defects in a sheet were to be unavoidable, it should be 
highly recommended at least to try minimizing their size. 
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Figure 8- Quench field as a function of defect size. 

Concerning the sheet thickness e, a trade off between 

two tendencies appears : The bracket term [~+ t] 
(the same that in the uniform case) should be minimized 
inclining to decrease e, but the strongest term (a/e)2 clearly 
favour the use of thick sheets. This can be understood by 
the fact that a thin sheet makes a smaller temperature 
drop between the two sides, but conversely, a thick 
sheet helps diffusing the heat in the radial direction thus 
minimizing the flux on the cold side. The conclusion is 
that, for a given defect, there is an optimum value for 
the sheet thickness (fig 9). In practice, that optimum is 
very broad (between 3 and 7 millimeters in our example), 
and the choice of thickness will be determined by other 
considerations (mechanical properties, stiffness, material 
weight and cost, ... ). But the thin sheets (less than 
Imm) have to be avoided, in contradiction with the result 
obtained in the uniform case. 
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Figure 9- Quench field as a function of sheet thickness. 
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Conclusion 

As a result, main conclusions are : 

1) First, as expected, the higher the RRR, the higher 
the quench field level. 

2) In our niobium cavities, quenches (at 20-30 MV/m) 
are presumably due to a local defect having poorer 
superconducting properties than pure niobium 
because in the uniform defect-free case, quench 
field is calculated to be substantially higher (over 
40 MV 1m). The size of defects appears to be of 
major importance. 

3) In the uniform defect-free hypothesis, the cooling 
of the superconducting surface is better for thinner 
walls; But in the realistic case of a defect, it turns 
out that there is an optimum value for the thickness 
of the niobium wall. 
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Appendix : The Hankel transform 

For any function f(x), one can define its Hankel transform 
as 

00 

F(k) = J x Jo(kx) f(x) dx 
o 

where 10 is the standard Bessel function of zero order. 
The inverse transform will be 

00 

f(x) = J k Jo(kx) F(k) dk 
o 

Some examples of Hankel transform functions are : 

Function f(x) Transform F(k) 

{f(x) = Yo (x < xo) 
F(k) = x~Yo J1(kxO) 

f(x) = 0 (x > xo) kxo 

2 
~ f(x) = Yo e-~ F(k) = You2 e-

F(k) = Yo (k < I) f( ) - sin(lx) 1v'l2 - k2 
x -Yo --- { 

Ix F(k) = 0 (k > I) 

F(k) = 
Yo(P - k2)m-1 

f(x) = Yo Jm(lx) 
2m - 1 m! 1m 

{ (k < I) xm 

F(k) = 0 (k > I) 
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