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Abstract 
The evolution of the coherent synchrotron frequency 

for the dipole mode with respect to the incoherent band is 
discussed analytically both in the unstable and stable 
regions. In the unstable region, Besnier�s picture is 
recovered in the case of a capacitive impedance below 
transition or inductive impedance above transition. A 
general plot gathering all the results in both the unstable 
and stable regions is given. Finally, Sacherer�s stability 
criterion is extended to include the potential-well 
distortion. This result is then applied to the case of the 
LHC at top energy. 

INTRODUCTION 
Consider the case of a capacitive impedance below 

transition or inductive impedance above transition. It is 
often said [1] that the coherent synchrotron frequency 
remains the same as the unperturbed small-amplitude 
synchrotron frequency when intensity increases (coherent 
and incoherent effects subtract). As the incoherent 
frequency spread is moving downwards the following 
question is raised: how can the beam be stable, as it seems 
to be impossible, even for a very large frequency spread? 
 

 

 

 
 

Figure 1: The case of a capacitive impedance below 
transition or inductive impedance above transition is 
considered here. How can the beam be stable? 

An answer to this question was given more than twenty 
years ago by Besnier [2] for a parabolic distribution 
function. After reviewing some general results on the 
longitudinal bunched-beam coherent modes, another 
answer to this question is given in Section 2.1 for the 
�elliptical� spectrum, which leads to a circular range of 
stability. The general plot gathering all the results in both 
the unstable and stable regions is shown in Fig. 3. Note 
that Sacherer�s stability criterion [3] is recovered for the 
stability limit. Note also that it is the same stability 
criterion as the one used in Ref. [4] and derived in Ref. 
[5] (with the approximation 1/3 ≈π ). 

Finally, the stability criterion, taking into account the 
potential-well distortion, is derived analytically in 
Section 2.2, and applied to the case of the LHC at top 
energy in Section 3. 

THEORY 

General plot for the coherent synchrotron 
frequency vs. the incoherent band 

The stability of the longitudinal bunched-beam coherent 
mode ...,1,0,1...,−=m  can de discussed from the general 
dispersion relation [3] 
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Here, ( )ωmI  is the dispersion integral given by 
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and 0scmm
l
cmm mωωω −=∆  is the coherent synchrotron 

frequency shift given by Sacherer�s formula [6,7] 
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Here, ( )τ�0g  is the stationary distribution of the 
synchrotron oscillation amplitude τ� , ss fπω 2=  is the 
synchrotron angular frequency taking into account the 
Potential-Well Distortion PWD (the unperturbed 
synchrotron angular frequency is 00 2 ss fπω = ), 1−=j  
is the imaginary unit, 0feNI bb =  is the current in one 
bunch with bN  the number of protons in the bunch, e the 
elementary charge, and π2/00 Ω=f  the revolution 
frequency, 0fB bτ=  is the bunching factor with bτ  the 
total bunch length (in seconds) taking into account the 

sωSs −ω 0sω

It is often said that �the coherent 
synchrotron frequency of the 
dipole mode does not move�

Incoherent synchrotron 
frequency shift i

sss ωωω ∆+= 0

Incoh.
spread
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PWD (the unperturbed total bunch length is 0bτ ), TV�  is 
the total (effective) peak voltage taking into account the 
PWD (the peak RF voltage is RFV� ), h  is the harmonic 
number, sφ  is the RF phase of the synchronous particle 
( 0cos >sφ  below transition and 0cos <sφ  above) taking 
into account the PWD (the unperturbed synchronous 
phase is 0sφ ), lZ  is the longitudinal coupling impedance, 

s
l
p mp ωω +Ω= 0  with ∞+≤≤−∞ p , and mmh  describes 

the bunch spectrum (sinusoidal modes for parabolic 
bunches).  

The stability diagram for the smooth distribution 
function ( ) 22

0 )�1(� ττ −∝g  used by Sacherer [3] is 
represented in Fig. 2, as well as the one corresponding to 
his �approximate� stability criterion 

||/||4 mS l
cmmω∆≥  (following the example of Keil and 

Schnell for coasting beams [8], Sacherer approximated 
the stability boundaries by semi-circles). The case of a 
capacitive impedance below transition or inductive 
impedance above transition corresponds to 

0)/(Re >∆ Sl
cmmω  and 0<∆ i

Sω . Here S  is the full 
spread between the centre and the edge of the bunch. A 
good approximation of the frequency spread is given 
by [9,10] 
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Figure 2: Stability diagrams for the smooth distribution 
function ( ) 22

0 )�1(� ττ −∝g  used by Sacherer [3], 
approximated by semi-circles, for modes m from 1 to 5. 

 
In the case of an �elliptical spectrum� 

2222
0

2 )1�2(1�/)�(� −−∝ ττττ ddg  [11], the 
dispersion relation writes [10] 
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Here, the coherent synchrotron frequency shift has been 
written VjUl

c −=∆ 11ω . Motions tje ω∝  are considered, 

which means that the beam is unstable when 0>V . 
Furthermore, the usual case where the resistive part of the 
impedance is small compared to the imaginary part, is 
assumed, i.e. UV << . Following Besnier�s approach [2], 
Fig. 3 is obtained.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Evolution of the coherent synchrotron frequency 
for the dipole mode with respect to the incoherent 
frequency spread, for an elliptical spectrum. 
 

This plot is very similar to Besnier�s graph (see Fig. 4 
of Ref. [2]), except that, contrary to Besnier, Fig. 3 also 
predicts stability for the case of an inductive impedance 
below transition or a capacitive impedance above 
transition. This difference comes from the fact that 
Besnier used a parabolic distribution function, which 
introduces some pathologies in the stability diagrams, due 
to its sharp edge [10]. It is seen in Fig. 3 that in the 
absence of frequency spread ( 0=S  and thus 0=k ), the 
coherent synchrotron frequency 11cω  is close to the 
unperturbed small-amplitude synchrotron frequency 

0sω  [10]. When the synchrotron frequency spread 
increases, the coherent synchrotron frequency 11cω  moves 
closer and closer to the incoherent band (stable region). 
The two possible cases are represented in Fig. 3: the case 
of a capacitive impedance below transition or inductive 
impedance above transition corresponds to 0>U  and 

0<∆ i
Sω  (and thus 0ss ωω < ), and the case of a 

capacitive impedance above transition or inductive 
impedance below transition corresponds to 0<U  and 

0>∆ i
Sω  (and thus 0ss ωω > ). Beam stability is 

obtained when the coherent synchrotron frequency 11cω  
enters into the incoherent band, i.e. when sc ωω =11  for 
the case of a capacitive impedance below transition or 
inductive impedance above transition, and when 

Ssc −= ωω 11  for the case of a capacitive impedance 
above transition or inductive impedance below transition. 
In both cases, the stability limit is reached for 4=k , i.e. 
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||4 US = , which is Sacherer�s stability criterion (in the 
usual approximation UV << ).  

Starting with a low intensity beam, the coherent 
synchrotron frequency 11cω  lies in the middle of the 
incoherent band, 2/011 Ssc −= ωω . As the intensity 
increases, the coherent synchrotron frequency 11cω  moves 
closer and closer to the limit of the incoherent band. Beam 
stability is lost when the coherent synchrotron frequency 

11cω  moves out of the incoherent band, i.e. when 
sc ωω =11  for the case of a capacitive impedance below 

transition or inductive impedance above transition, and 
when Ssc −= ωω 11  for the case of a capacitive 
impedance above transition or inductive impedance below 
transition. Again, in both cases, the stability limit is 
reached for 4=k , i.e. ||4 US = .    

 Stability Criterion Taking into Account the 
Potential-Well Distortion 

The stability limit obtained above is the same as 
Sacherer�s stability criterion. Using Eq. (3), with )(�

bT IV  
and )( bIB , but neglecting the synchronous phase shift 
(which comes from the resistive part of the impedance, 
usually small), the following stability criterion is 
obtained [10] 
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APPLICATION TO THE LHC AT TOP 
ENERGY 

The most dangerous longitudinal single-bunch effect in 
the LHC is the possible suppression of Landau damping at 
top energy (7 TeV) [12]. The stability criterion of Eq. (8) 
is the same as the one used in Ref. [13], on the flat top 
and neglecting the potential-well distortion ( 1=PWDF ). 

Using the same numerical values, 
( ) ( ) Ω== 28.0// 1100

eff
l

eff
l ppZppZ , TeV7=E , 

cm5.7=bσ , MV16� =RFV , and 35640=h , the same 
intensity threshold is obtained (since 01.1≈PWDF ) 

 
 .p/b104.2 11×=th

bN  (11) 

CONCLUSION 
The evolution of the coherent synchrotron frequency 

for the dipole mode has been described analytically both 
in the unstable and stable regions. The general plot 
gathering all the results in both the unstable and stable 
regions is represented in Fig. 3. The stability criterion, 
taking into account the potential-well distortion, has also 
been derived analytically and applied to the case of the 
LHC at top energy. The same numerical result as in 
Ref. [13] has been obtained as the potential-well 
distortion is very small in this case. 
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