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Abstract

We discuss nonlinear beam shaping by octupole and sex-
tupole to fold the tails of a Gaussian beam into its core, for
the purpose of improving betatron injection in storage rings
by significantly reducing the beam width at the injection
septum and thus reducing beam centroid offset from the
stored beam. Necessary conditions as well as challenges
for such nonlinear injections are explored.

INTRODUCTION

Injection is an important (yet often problematic) process
in circular accelerators. Usually fast and strong kicks are
used to merge the incoming beam with the stored beam (no-
ticeable exceptions are charge-exchangeH− injection with
a stripping foil and International Linear Collider damp-
ing ring injection where no stored beam exists during in-
jection). Due to Liouville’s theorem, certain phase-space
separation of the incoming and stored beams are unavoid-
able. Here we consider the transverse injection scheme
where the two beams are separated in the transverse phase
space, say the horizontal plane. This injection scheme is
commonly used in lepton machines where the two sepa-
rated beams can be radiation damped into one. It is impor-
tant to minimize the phase-space separation so that both
beams can stay within the acceptance of the circular ma-
chine. This becomes more and more critical in modern
storage-ring-based light sources such as the Advanced Pho-
ton Source, where acceptance is sacrificed for small emit-
tance and narrow-gap insertion devices. On the other hand,
the sizes of the stored and injected beams as well as the
physical existence of a (septum) kicker requires certain
clearance from the beams and thus limits the minimum sep-
aration reachable by the two beams. Therefore, the area
close to the septum becomes the bottleneck of the injection
process, which may result in demanding requirements for
the kicker and incoming beam emittance. This note will ex-
plore possibilities to ease this bottleneck by properly fold-
ing the long tails of the Gaussian phase-space distribution
of an incoming beam locally with nonlinear optics such that
the incoming beam can come much closer to the septum
and the stored beam.

NONLINEAR BEAM SHAPING

It is well-known that octupoles can be used to fold the
tails of a Gaussian beam onto its core and make a more uni-
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form distribution with sharper edges [1-4]. This technique
is commonly used to make uniform illumination on targets.
There are also proposals of using octupole beam shaping
in linear colliders to make a cylindrical beam lens for fi-
nal focusing or to make a nonlinear collimation system. To
explore nonlinear beam shaping for injection purposes, we
consider using a sextupole (n = 2) or octupole (n = 3).

To simplify the discussion we assume the nonlinear ele-
ment is thin and write the beam transport from the nonlin-
ear element to the injection point as
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whereR is the linear transfer matrix between the initial
and final phase-space points{x0, p0} and{x, p}, respec-
tively; and k is the integrated strength of the nonlinear
element. Using the Twiss parameters at the ends and the
phase-advance∆ between them, theR-matrix can be writ-
ten in the well-known form
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Since our main concern is the transverse dimension of
the beam at the injection point, we express the transverse
position as

x =
√

2βJ0 [ cos(θ0 + ∆) + 2 ā sin∆ cosnθ0] , (3)

whereJ0 andθ0 are the action-angle variables in the ini-

tial phase space and the parameterā ≡ 2
n−3

2 k β
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2

0 J
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0 .
Our focus is on the beam edge given by the3σ contour
with J0 = 9ǫ/2, whereǫ is the emittance of injected beam.
The first term yields the unperturbed position and the sec-
ond term gives the correction due to the nonlinear kick.
For a given̄a, extreme positionxm will be reached when
∂θ0

x = ∂∆x = 0, i.e.,

sin(θ0 + ∆) = −2ā sin∆ n cosn−1θ0 sin θ0

= 2ā cos∆ cosn θ0. (4)

Let θm and∆m be a solution set, then we have the con-
dition cos(θm + ∆m) = −(n + 1) sin θm sin∆m and the
extreme value

xm =
√

2βJ0[−(n+1) sin θm+2ā cosn θm] sin∆m. (5)

Therefore, it is desirable to have the phase advance∆m

close to a multiple ofπ (note that there is no solution for
∆m = integer · π). A more geometric view of this is that,
under such a condition, the peaks of the two terms in Eq. (3)
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are synchronized for more effective cancellation. Because
of this and an important reason discussed below, it is prefer-
able to choose a phase advance∆ close to but less thanπ.

With a phase advance∆ ≃ π, the transverse position
becomes

x ≃
√

2βJ0 [− cos θ0 + 2 ā sin∆ cosnθ0] . (6)

For a sextupole, Eq. (6) can be written as
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Note that the mapping due to a sextupole is asymmetric.
The last term in the above equation gives the minimum
width

√
2βJ0/|8ā sin∆| provided that4ā sin∆ ≥ 1. If

we choosēa sin∆ = ±1/2, a beam will be compressed by
a factor of 4 on one side while enlarged by a factor of 2
on the other side. For an octupole, Eq. (6) has the extreme
values

xm1 =±
√

2βJ0 (1 − 2 ā sin∆), (8)
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atθ0 = integer · π andcos2 θ0 = 1/6 ā sin∆, respectively.
Setting|xm1| = |xm2| yields the optimum solution

xoct
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√

2βJ0

cos(3θ0)

3
, with ā sin∆ =

2

3
, (10)

where a factor 3 reduction in amplitude can be obtained,
which is consistent with [5].

SYMMETRIC FOLDING BY OCTUPOLE

To illustrate the beam shaping effects, we show some ex-
amples with the parametersβ = β0 = 20 m, α = α0 = 0,
ǫ = 90 nmrad, which are close to the injected beam para-
meters at the final septum kicker in the Advanced Photon
Source. Two cases are shown here. One with a phase ad-
vance∆ = 0.98π, andk = 6.55 × 104 m−3, which gives
ā sin∆ ≃ 2/3 for 3σ contour. The other with a phase ad-
vance∆ = 0.9π, andk = 1.2 × 104 m−3, which gives
ā sin∆ = 0.6. In Fig. 1a and Fig. 1b the phase-space con-
tours are plotted for the two cases together with the3σ-
contours for the original beam and a Gaussian beam with
3 times smaller emittance. In Fig. 1c beam distributions
across the axis are plotted for the two cases together with
the original distribution as well as an unshaped distribution
with a 3 times smaller emittance. Clearly octupole beam-
shaping is symmetric, which is important for many appli-
cations (and thus more commonly used than sextupoles).

ASYMMETRIC FOLDING BY SEXTUPOLE

Similar to the octupole examples above, Fig. 2 shows
beam shaping with a sextupole. For the∆ = 0.98π exam-
ple, a sextupole withk = 200 m−2 (ā sin∆ ≃ 0.5) is used.

For the∆ = 0.9π example, a sextupole withk = 27 m−2

(ā sin∆ ≃ 0.34) is used. Unlike using an octupole, sex-
tupole beam shaping is asymmetric. It can effectively fold
one side of the Gaussian tail back into its core, but on the
other side, the tail becomes longer. Since the main conges-
tion during injection is only on the side close to the septum,
sextupole beam shaping can be used to ease injection. Note
that the minimum width in Fig. 2c is smaller than that in
Fig. 1c.

The illustrations in Figs. 1 and 2 demonstrate that an oc-
tupole or sextupole can effectively fold the Gaussian tail
back into its core and significantly reduce the effective
beam width. For the moderately shaped beams in Figs. 1b
and 2b, it is equivalent to reducing the injected beam emit-
tance threefold, while the required field strengths are feasi-
ble.

LOCALIZING NONLINEAR DISTORTION

Although nonlinear beam shaping can significantly re-
duce beam width and thus ease the injection bottleneck
around the final septum, overall the beam will occupy a
much larger phase-space area after strong nonlinear distor-
tions. Therefore, it is important to make such a distortion as
local as possible. An obvious solution is to compensate the
initial kick with another nonlinear kick after aπ phase ad-
vance. If the Twiss parameters at both kicks are the same,
we have the common “-I” correction where kicks of the
same strength will cancel each other and leave no nonlinear
effects afterward. However, the map between the opposite
kicks does not have to be a “-I” transformer, as long as it is
linear with aπ phase advance. Under such conditions, the
beam at the compensating element (with Twiss parameters
βc andαc) is given by
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thus, a compensating kick of strength

k̄ =

(

β0

βc

)

n+1

2

k (12)

will remove the nonlinear term. Theβ-factor could be used
to reduce the strength of the compensating nonlinear el-
ement that is located inside the storage ring. For exam-
ple, βc = 30 m will reduce the compensating sextupole
strength fromk = 27 in Fig. 2b tok̄ = 15.

As we discussed before, the phase advance between the
beam-shaping element to the injection point is close to but
less thanπ, thus the compensating nonlinear element will
be fairly close to the injection point with a small phase ad-
vance between to make up the difference fromπ. There-
fore, the storage ring will see little of the nonlinear manip-
ulation of the injected beam. However, the compensating
nonlinear element in the storage ring will usually be strong
and need certain upstream nonlinear elements in the ring
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(a)∆ = 0.98π, ā sin∆ ≃ 2/3
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Figure 1: Illustration of octupole beam shaping: (a) contour plots of phase-space distributions, up to3σ contour for a
shaped beam and3σ contour only for the original beam; (b) similar to (a) but with additional3σ contour (yellow) of a
three times smaller emittance; (c) beam distributions across the axis for the original beam (black), shaped beam (blue)
with ∆ = 0.98π, shaped beam (red) with∆ = 0.9π, and unshaped beam (green) with a three times smaller emittance.
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Figure 2: Illustration of sextupole beam shaping. See the caption of Fig. 1 for explanation.

to reduce its effect on the stored beam such that most of
the ring will be sufficiently linear with adequate dynamic
aperture. Though nontrivial, it seems possible to accom-
modate such a nonlinear injection in a storage ring, espe-
cially in new designs (whether it is worthwhile is another
issue). Note that the strength of the compensating element
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Figure 3: Phase-space contours after an incomplete com-
pensation with half of the required strength. Inner (outer)
ellipse is the undistorted3σ (4.3σ) contour.

can be somewhat smaller thank̄, because non-perfect cor-
rection will only leave a small amount of nonlinear distor-
tion in the injected beam, which is tolerable in the ring. As
an example, Fig. 3 plots the phase space after a compen-
sating sextupole with only half thēk required by Eq. (12).
Another possibility is to cut off the nonlinear tails before
injection by collimation. Further feasibility study is neces-
sary, including the effects of possible centroid offsets inthe
compensating element.
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