PROGRESS IN ACCELERATOR RAMP;D FOR HIGH ENERGY DENSITY PHYSICS AND WARM DENSE MATTER APPLICATIONS

H. Qin, PPPL, Princeton, New Jersey

Abstract

The research objectives of the U.S. Heavy Ion Fusion Science Virtual National Laboratory include: achieving warm dense matter conditions on near-term experiments and addressing the top-level scientific question: "How can heavy ion beams be compressed to the high intensities required for creating high energy density matter and fusion ignition conditions?" The accelerator R&D effort is focused on the Neutralized Drift Compression Experiment (NDCX), studies of electron cloud, and advanced theory and simulation. NDCX has achieved a longitudinal compression factor of 60 in a background plasma. Simulations using the LSP code agreed well the experiments. A kinetic model showed that the Vlasov equation possesses a class of exact solutions describing both transverse and longitudinal compression. Extensive measurements of electron cloud were carried out on a high brightness beam. An algorithm for large time-step advancement of electron orbits and a suite of models for electrons, gas, and wall interactions were implemented in the WARP 3D code. Electron-ion two-stream instabilities and the temperature-anisotropy instability have been simulated using a low-noise delta-f method by the BEST code.

PAPER NOT YET RECEIVED