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Abstract

Collective instabilities are a potential limiting factor for
the performance of the FAIR [1] rings at GSI Darmstadt.
We discuss results of experimental and numerical investi-
gations of transverse collective beam behavior in the SIS 18
synchrotron. Damping mechanisms in the presence of
space charge, especially Landau damping and decoher-
ence due to nonlinearities are discussed; effects induced
by internal-only, external-only nonlinearities, and combi-
nations of the both are addressed. As a computational tool
accounting the beam nonlinear dynamics with impedances
and self-consistent space charge, the particle tracking code
PATRIC is used.

INTRODUCTION

During dedicated experiments at SIS 18 with a high in-
tensity (5e10 particles) Ar18+40 coasting beam at the injec-
tion energy (11.4 MeV/u) on March 15, 2006, robust trans-
verse collective instabilities have beam observed. Figure 1
displays the time evolution of the vertical position for the
beam center (the upper one) and of the beam current (bot-
tom) and demonstrates the increase of coherent perturba-
tion (with the growth time approx. 20 ms), its saturation and
the simultaneous beam loss. The observed dipole oscilla-
tion is at 160 kHz, the frequency of the slow-wave mode
n = 4 (which should be the most unstable one for the
resistive-wall exciting mechanism) and set tune Qvert =
3.29 is frw =154 kHz. The difference might have resulted
from a deviation of the actual tune. With the growth time in
a good agreement with the impedance estimation, we con-
clude that this is the resistive-wall instability.

Space charge effects are crucial for SIS–synchrotrons
due to weakly-relativistic velocities and small beam aper-
ture/radius ratios. Landau damping mechanisms should be-
come effective to damp the instabilities. For example, for
the SIS 18 beam at the injection energy the coherent fre-
quency lies fairly close to the incoherent spread, where the
linear Landau damping (due to the momentum spread) can
have an effect. Other damping mechanisms, as due to non-
linearities (amplitude-dependent incoherent tune) may then
become decisive for FAIR rings.

Nonlinear Landau damping influences the collective
beam motion due to an incoherent tune spread, which can
be induced by internal effects (nonlinear space charge) and
by external nonlinearities (e.g., an octupole). Additionally,
there exists a complex interplay between the two nonlin-

ear damping mechanisms. Although a number of analytical
works have been done (e.g., [2]-[5]), there is still some un-
certainty about questions as (a) whether damping due to in-
ternal nonlinearity effects alone is effective; (b) how damp-
ing mechanisms interfere for the combination of external
and internal nonlinearities; etc. Our strategy in this work
is to try to further clarify the issue by solving two differ-
ent dispersion relations and performing simulations using
the code PATRIC. We consider the most interesting cases
(internal effects alone, external nonlinearity alone, combi-
nation of both) for identical beam parameters and compare
results.

Figure 1: The transverse collective instability measured in
SIS 18. Top: beam position, bottom: beam current.

TWO DISPERSION RELATIONS

Two different analytic approaches to describe damping
due to nonlinearities can be found in the literature.

The first approach [2] formulates the dispersion relation,

A Z⊥(Ω) =

[
−i

∫
dψ0

da

ada

Ω/ω0 − Q(a)

]−1

, (1)

where ψ0(a) is the stationary part of the amplitude distri-
bution, Ω is the complex collective frequency to be found,
(AZ⊥) is the normalized transverse dipole impedance
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Figure 2: Typical time evolutions of the beam center from simulations using PATRIC for two different Im(Z ⊥); left: no
damping (instability); right: damping dominates (stable). Normalized impedances V, U correspond to Fig. 3, right.

which includes coherent and incoherent interactions, and
Q(a) is the complete incoherent particle tune.

Within the second approach [3] one constructs another
dispersion relation,

∫
dψ0

da

[ΔQcoh − ΔQinc(a)]ada

Ω/ω0 − (Q0 + ΔQinc)
= 1 , (2)

where ΔQcoh is the coherent tune shift (i.e., ∝ Z⊥
coh),

Q0(a) includes only tune shifts due to external nonlineari-
ties and ΔQinc(a) is the tune shift induced by internal ef-
fects only (here, nonlinear space-charge).

The decisive difference between these two approaches
is the way how tune shifts are treated. Eq. (1) does not
separate explicitly contributions to tune shifts induced by
external and internal forces. This leads to a damping (the
integral has a singularity) whenever the coherent tune over-
laps the incoherent tune spread. In contrast, the second ap-
proach [Eq. (2)] treats separately the nonlinearities of dif-
ferent nature. In a situation without external effects (when
Q0 is the bare tune) the integral in Eq. (2) has no pole
which means the solution Ω is real. Thus Eq. (2) predicts
no damping for this case even if the coherent tune overlaps
the incoherent tune spectrum.

Solution of the dispersion relations

Both of the dispersion relations Eq. (1) and Eq. (2),
which are formulated in a simplified manner here, we solve
numerically. The amplitude-dependent tune shift due to
nonlinear space-charge is integrated numerically. Includ-
ing the cubic component of the transverse force from an
octupole lens, the tune shift of the classical anharmonic os-
cillator is taken into account, ΔQoct(a) ∝ K3a

2, where

K3 = 1
Bρ

d3By

dx3 is the octupole strength for the horizontal
motion. The waterbag distribution is assumed for the beam
and the integration is performed one-dimensionally for the
horizontal plane.

PARTICLE TRACKING SIMULATIONS

For simulations of instabilities and nonlinear dynamics
in accelerator rings we employ the particle-in-cell track-
ing code PATRIC, which is a part of the numerical devel-
opment effort in the High-Current-Beam-Physics group at
GSI Darmstadt. Particle are moved in a complete 3D and
nonlinear description. For the space charge, the sliced ap-
proach (”2 1

2–dimension“) with self-consistent electric field
is used. Two solvers for the Poisson equation are imple-
mented, for rectangular and elliptic boundary conditions.
Transfer matrix calculated by the code MADX can be used.
The impedance implementation allows to model an arbi-
trary external (coherent) impedance spectra.

Parameters for the simulations presented here were cho-
sen in a way to achieve the closest possible condition to
that used for the dispersion relations. The beams were
matched in size, a constant focusing model was used for
the lattice. In simulations with external nonlinearities, a
cubic component (characterized by the octupole coefficient
K3), distributed along the ring, was super-imposed onto the
particle motion. As an initial condition, the waterbag dis-
tribution was chosen. In the simulations, presented here,
we did not observe noticeable modifications of the particle
distribution, other types of the beam distribution were not
examined for this work. To focus on the physics of nonlin-
earities, we exclude effects of the finite momentum spread.
A round pipe as boundary condition has been used. Note
that other types of a conducting wall, as elliptic or rectan-
gular one, produce external incoherent tune shifts and for
this reason they are inapplicable for the case of internal ef-
fects only.

Series of simulations have been performed with varying
both Re(Z⊥) and Im(Z⊥) to study comprehensively the
stability properties. Change of Im(Z⊥) shifts proportion-
ally the coherent frequency Ω and allows to scan it over
the incoherent spectrum (the coherent shift from the im-
age charges of the conducting wall must then be taken into
account). SIS 18–similar costing beam parameters have
been assumed, with the factor 5 larger intensity to make
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Figure 3: Comparison of results of simulations (� and ×, see the previous figure for examples) with solution of the
dispersion relation Eq. (2) (lines). Left: external nonlinearity alone, right: combination of external and internal (nonlinear
space-charge) nonlinearities. V ∝ Re(Z⊥); U ∝ Im(Z⊥) ∝ ΔΩcoh.

growth- and damping times smaller for reasonable comput-
ing times. A rather weak external nonlinearity (octupole
K3 = 5 m−4) was assumed to keep the beam distribu-
tion regular. Small enough initial perturbations were used.
As an example, Fig. 2 shows the characteristic behavior of
the beam center simulated for fixed finite Re(Z⊥) but dif-
ferent Im(Z⊥). Without incoherent tune spread, both of
these beams would be identically unstable. Here, the case
of the combination of nonlinear space-charge and octupole
effects is taken.

For the results presented here we used an octupole with
a polarity, which shifts the incoherent tune in the same di-
rection as space charge. Thus it enhances the internal-effect
tune spread. With the opposite polarity, the octupole acts as
a reduction, which we do not discuss here due to shortage
of space.

COMPARISONS AND DISCUSSION

Our first trilateral comparison is for the case of internal-
effects-alone, where dispersion relations Eq. (1) and Eq. (2)
provide the largest qualitative discrepancy. Series of sim-
ulations with the code PATRIC for zero and finite Re(Z⊥)
and extensive Im(Z⊥)–scans did not show any damping,
which supports the prediction of the dispersion relation
Eq. (2) [3].

Next, we solve the dispersion relation Eq. (2) for the
external-nonlinearity-alone case (Fig. 3, left) and for the
combination of both nonlinearities (Fig. 3, right). The
lines in Fig. 3 show the stability boundaries, i.e., the con-
tour level for Im(Ω) = 0 in the normalized coherent
impedance plane V + iU = AZ⊥. The stable areas lie
on the left of these lines. V is proportional to the resistive
impedance, U to Im(Z⊥) and to the coherent frequency
shift ΔΩ; the normalization is such that U = ΔΩ/|Δωdsc|,

where Δωdsc is the incoherent direct space-charge shift of
the equivalent flat-profile beam. According to Eq. (2), an
addition of the nonlinear space-charge effect to the external
nonlinearity results in a strong enhancement of the stabil-
ity, whereas the size of the stable area remains unchanged
in Re(Z⊥) and greatly enlarges in Im(Z⊥) (see Fig. 3).

Results of simulations scans are also shown in Fig. 3
with squares (no damping, as Fig. 2, left) and crosses
(damping dominates, as Fig. 2, right), where each of these
symbols is an outcome of a simulation run. In the case
of external nonlinearity alone (Fig. 3, left) there is an
agreement between Eq. (2) and PATRIC simulations. For
the combinations of nonlinearities (Fig. 3, right) our sim-
ulations confirm the enlargement of the stability along
Im(Z⊥), but they disagree with the dispersion relation re-
garding the extent of the stability area in Re(Z⊥). Our
simulations predict a significant reduction of the instability
threshold in Re(Z⊥) for the combinations of nonlinearities
with respect to the damping induced by external nonlinear-
ities alone. Reasons for the discrepancy may be connected
with the facts that the dispersion relation Eq. (2) is a one-
dimensional approximation of the 2D problem and the ap-
proach of Ref. [3] is based on heuristic argumentation.

REFERENCES

[1] P. Spiller, these proceedings

[2] J. Laclare, Proc. Symp. on Accel. Aspects of heavy ion Fu-
sion, GSI-82-8, p. 278 (1982)
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