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Abstract

With the development of high intensity accelerators, the
role of space charge effects in a nonlinear lattice has gained
special attention, as in the FAIR project at GSI, where long
term storage of high intensity beams is required. The si-
multaneous presence of space charge and a nonlinear lat-
tice creates an unprecedented challenge for ring design-
ers as well as a new area of studies in beam physics. We
present our understanding of the effect of space charge and
chromaticity on the nonlinear beam dynamics of a bunched
beam. We apply our findings also to an earlier CERN-PS
experiment.

INTRODUCTION

Beam loss produced during long term storage in syn-
chrotrons has become very important for new projects. In
the FAIR project [1, 2] the beam loss in a bunched beam
in the SIS100 synchrotron is assumed not to exceed sig-
nificantly 1% during 1 second storage. In fact the large
ionization cross section of the stored ion U+28 with resid-
ual gas atoms makes the vacuum quality very sensitive to
beam loss. A too large beam loss triggers a progressive vac-
uum degradation which may reduce considerably the beam
lifetime. The standard value of 1 W/m beam loss and pro-
tection of cold superconducting part of magnets imposes
also beam loss at the % level. In the SIS100 [1, 2], bunched
beams with∆Qx = −0.3 are stored for 1 second, and the
role of high intensity in a nonlinear lattice has become a
critical subject of study. In order to describe the basic beam
degradation mechanism deriving from the space charge in
bunches, we consider a high intensity bunch stored in a ring
having only one vertical lattice resonance. This assumption
is done for the sake of simplicity without losing generality.
First we discuss the resonance trapping in absence of the
chromaticity. The main features of this dynamical system
are:

• The space charge couples transverse and longitudinal
planes: the instantaneous transverse Coulomb force
depends on where in the longitudinal plane a particle
is located;

• The self consistent effects in the absence of syn-
chrotron motion do not cause emittance blow-up for
non KV-distribution [3]: coherent resonances are not
excited by transverse Gaussian distributions;
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• The longitudinal motion induces, via space charge, a
slow variation of transverse tunes. This condition is
common in synchrotrons, for instance in the SIS100,
Qx0 ∼ 20 while the longitudinal tune can be of the
order ofQz0 = 10−3 so that theQz0/Qx0 ∼ 10−5;
for the LHC we findQz0/Qx0 ∼ 10−4;

• The presence of a relatively small tune shift
(∆Qx/Qx0 ∼ 1.5% for SIS100), does not destroy the
standard transverse nonlinear dynamics, but rather in-
duces a slow modulation of transverse tunes according
to the synchrotron frequency;

• The transverse-longitudinal space charge coupling in-
fluences, via the depression of tunes, the transverse
position where the resonance condition is met.

Resonances in phase space

The main consequence is that the position of instantaneous
transverse islands (resonances) in phase space is depending
on the longitudinal position of particles within the bunch.
According to the position of the bare tuneQx0 with respect
to the resonanceQx,res and the maximum tunes shift∆Qx,
we can distinguish the following cases:

1. Qx0−Qx,res > |∆Qx|. With this condition, the tune-
spread never intercepts the resonance and no island
can appear in the transverse phase space;

2. Qx0 −Qx,res = |∆Qx|. Here the particles with max-
imum tune depression touch the resonance, but no is-
lands are formed as the space charge detuning pre-
vents the resonance condition to be met;

3. |∆Qx| > Qx0 − Qx,res > 0. When this condition
occurs, particles with maximum tune depression (at
z = x = y = 0) fall below the resonance (bare
tune above it), whereas particles at large transverse
amplitudes are always above the resonance: the is-
lands are formed at an intermediate amplitude, which
depends on the particle longitudinal position. The
outer position of the fixed points occurs atz = 0,
whereas the smaller is atx = 0, and it happens only
in two symmetric longitudinal bunch positions. Note
that the outer position of the fixed points depends on
Qx0 −Qx,res: for Qx0 → Qx,res the maximum posi-
tion of the fixed points is (virtually) infinite;

4. Qx0 − Qx,res ≤ 0. In this case the tune-spread can-
not cross the resonance. WhenQx0 = Qx,res only
particles at very large amplitude can be resonant.
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When synchrotron motion is present, a periodic crossing
of the resonance takes place. All particles, which period-
ically cross the resonance, will slowly diffuse out to form
a halo. Its density and extension depend on the number of
particles that cross the resonance, and on the outer posi-
tion of the islands (see [4]). If the outer position of islands
intercepts the beam pipe or reaches the dynamic aperture
beam loss occurs according to a rate which is function of
the distance from the resonance. This process is related to
halo formation in mismatched linac beams, where a second
order resonance appears [5].

ADIABATICITY

In normal condition, without slow change of parameters
(tune modulation), if a particle is inside an island, it always
remains there. However, when parameters change, islands
migrate through the particle orbit, and a process known as
crossing of the separatrix takes place [6, 7, 8]. When the is-
lands move and the particle is initially inside of them, then
the particle may follow it or not: if the motion of the island
is slow enough with respect to the frequency of revolution
Qxf around the fixed points, then we expect that the par-
ticle remains trapped. This situation can be formulated in
terms of an adiabaticity parameter

T ≡
∂xf (n)

∂n

1

Qxf(n)∆x(n)
, (1)

wherexf (n) is the transverse position of the fixed point
and∆x(n) is the island size. All these quantities depend on
the number of turnsn and on the longitudinal dynamics, i.e.
on the type of longitudinal motion (1 RF, 2 RF, or a barrier
bucket system, see [9]). The term(∂xf (n)/∂n)/Qxf(n)
in Eq. 1 represents the transverse shift of the fixed pointxf

due to the combined effect of space charge and synchrotron
motion during the time needed for one revolution around
the fixed points. When this shift is small compared with
the island size (T < 1) the particle will follow the island
motion (trapping). If the shift is too large (T > 1), the
particle will not be able to follow the motion of the fixed
points (scattering).

TRAPPING AND SCATTERING REGIME

If the condition 3) is satisfied, particles in the bunch may
undergo a periodic crossing of a lattice induced resonance
and have a finite probability of being trapped into trans-
verse islands. When trapping does not occur, the particle
orbit is subjected to a jump (scattering of the invariant).
We show these effects for the SIS18 synchrotron. We take
Qx0 = 4.35, Qy0 = 3.2, and add a sextupole to a lin-
ear constant focusing lattice to excite the 3rd order reso-
nance3Qx = 13. The space charge is chosen such as
to create a maximum tune-spread of∆Qx = −0.1. In
Fig. 1a is shown an example of how the adiabaticity pa-
rameterT varies along the bunch for a longitudinal tune
of Qz0 = 10−3. Note that for|z|/σz > 0.7 the fixed

points are in a non-adiabatic regime asT > 1. The con-
sequence of this regime is shown in Fig. 1b: when the
islands crosses the particle orbit, the particle is not able
to follow the fixed point and the invariant (single particle
emittance) is subjected to a small jump (scattering of the
invariant). The test particle used here has initial coordi-
natesx = 1.5σx, px = y = py = pz = 0, andz = 3σz.
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Figure 1: Scattering regime: a) adiabaticity parameter, and
b) scattering of the single particle invariant.

In Fig. 2a is shown an example of how the adiabaticity pa-
rameterT varies along the bunch forQz0 = 5 × 10−5.
Here for|z|/σz < 1.7 islands cross the particle orbit very
slowly and full trapping may occur (Fig. 2a).
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Figure 2: a) Adiabaticity parameterT and b) evolution of
the single particle invariant in an adiabatic regime for the
same test particle of Fig. 1.

ESTIMATE OF ASYMPTOTIC TRAPPED
PARTICLES

We attempt here to estimate the fraction of particles which
cross the resonance for a 6D matched Gaussian distribution
[4, 10]. For a particle with small transverse amplitude the
depressed tuneQx is

Qx = Qx0 − ∆Qx exp

[

−0.5

(

z

σz

)2
]

, (2)

wherez is the longitudinal amplitude of the particle andσz

the longitudinal rms size. IfQx0 satisfies the condition 3)
(see Introduction) we can define a transition longitudinal
emittanceεzt

such thatQx,res = Qx0, see Fig. 3. The red
line represents the longitudinal orbit which crosseszt, the
longitudinal position where the islands merge to the lon-
gitudinal axis. A particle with small transverse amplitude
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will cross the resonance 4 times per synchrotron oscilla-
tion, if εz > εzt

(the external shell in Fig. 3), and never
in caseεz < εzt

. In addition, particles insideεzt
may also

cross the resonance if their transverse amplitude is large
enough to intercept the smaller separatrix. Only particles
with transverse amplitude larger then the outer island sepa-
ratrix cannot be trapped. This fraction of particles is, how-
ever, small forQx0 close the resonance.

Figure 3: Schematic of the transition emittanceεzt
and re-

lation betweenzt andεzt
.

The total number of particles crossing the resonance can be
written as

∆Nt

N
= α

Qx0 − Qx,res

|∆Qx|
. (3)

α depends on the topology of the islands, and its lower
limit is obtained by a direct integration in(z, δp/p) over
the distribution for particles satisfyingεz > εzt

: we find
α > 1. Note that Eq. 3 is valid forQx,res < Qx0 <
Qx,res + |∆Qx|/α. As we do not know the exact value of
α, we benchmarked Eq. 3 forα = 1 by using the SIS18
including now in the lattice a scraper placed at3σx of the
beam. We also usedQz0 = 10−3 and∆Qx = −0.1. The
beam loss is counted after2.5×105 storage turns. In Fig. 4a
we show the results of beam loss when the scraper is used
and without it.
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Figure 4: a) Beam loss induced by trapping/scattering of
particles (green markers), in red markers beam loss by
shrinking of the DA (no scraper); b) Bunch intensity/length
evolution vs. storage time forQx0 = 4.3525.

When the scraper is removed (red markers), a tiny beam
loss occurs because of the shrinking of the dynamic aper-
ture. Contrarily, when the scraper is activated large beam
loss is found (green markers): the pink line is given by
Eq. 3 with α = 1. As expected, Eq. 3 slightly underes-
timates the beam loss; a fit of Eq. 3 with the simulated

beam loss requiresα = 1.5 as suggested in [11]. Note
that the loss in the region4.352 < Qx0 < 4.37 is below
the analytic estimate as the beam loss has not reached sat-
uration. This is due to the small area of phase space, which
intercepts the scraper: in fact, slightly belowQx0 = 4.37,
the beam halo barely touches the scraper and therefore the
probability that a particle reaches that tiny area in phase
space is very small. Consequently the characteristic time
for losing all particles, which periodically cross the res-
onance, is drastically enhanced. Another important con-
sequence of this beam loss mechanism is that the loss of
halo particles is accompanied by a bunch shortening (see
[10]) as lost particles are characterized by largeεz. This
is seen in Fig. 4b where the beam loss (black curve) and
bunch length (red curve) are plotted forQx0 = 4.3525.
The red curve oscillates because of the small number of
macro-particles in the bunch (1000). The correlation beam
loss vs. bunch shortening is evident.

ESTIMATE OF THE ASYMPTOTIC RMS
EMITTANCE

When beam loss does not occur, particle trapping causes
an emittance growth [4, 10]. For design and machine op-
eration it is important to develop a fast estimate of the
asymptotic emittance growth factorε̃x/ε̃x0, whereε̃x and
ε̃x0 are the rms asymptotic, respectively initial emittances.
As usual the rms emittance of the matched beam at the be-
ginning of the storage is given bỹεx0 = β−1

x 〈x2〉. We can
distinguish between theN − ∆Nt particles, which never
cross the resonance (labeled here asxn), and the∆Nt

that will periodically cross it (labeled here asxc). Due to
the trapping/scattering phenomena the particlesxc will dif-
fuse occupying all the phase space spanned by the islands.
Therefore the asymptotic rms emittance can be estimated
asε̃x = (N −∆Nt)/Nβ−1

x 〈x2
n〉+ ∆Nt/Nβ−1

x 〈x2
c〉. Note

that for(Qx0−Qx,res) < ∆Qx the particlesxn do not have
a transverse distribution sensibly different from the initial
one, therefore it is reasonable to takeβ−1

x 〈x2
n〉 ' ε̃x0.

By assuming that the trapped particles spread uniformly
over the area bounded by outer separatrix, of maximum
single particle emittanceεx,max, we find thatβ−1

x 〈x2
c〉 '

εx,max/4. The final estimate reads

ε̃x

ε̃x0

' 1 −
∆Nt

N
+

∆Nt

N

εx,max

4 ε̃x0

, (4)

where the number∆Nt/N is estimated by Eq. 3. Note that
Eq. 4 is valid only whenεx,max is larger then the edge emit-
tance of the beam (i.e.∼ 9 ε̃x0 for a Gaussian beam). We
have benchmarked Eq. 4 forα = 1 by computing the rms
emittance in the SIS18 after 1000 synchrotron oscillation
(Qz0 = 10−3) for the same working points as in Fig. 4a.
The results of these simulations with 2000 macro-particles
are shown in Fig. 5 (red curve). In black we plot the result
from Eq. 4. Note that as expected, Eq. 4 yields wrongly
ε̃x/ε̃x0 < 1 for Qx0 > 4.39 becauseεx,max < 4εx0.
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Figure 5: Comparison of the asymptotic rms emittance be-
tween simulation (red curve) and analytic estimate (black
curve).

SCALING LAW FOR 3RD ORDER
RESONANCE TRAPPING

We start here a first discussion on scaling laws for space
charge induced trapping effects. The first step is to perform
a scaling in order to keep the topology of the phase space
orbits atz = 0 invariant. We consider the scaling







K2

∆Qx

Qx0 − Qx,res

→ Σ ×







K2

∆Qx

Qx0 − Qx,res

(5)

This transformation keeps unchanged the relative position
of the resonance in the tune-spread. As the contribution
of space charge is changed by a factorΣ, then in order
to keep the size of the island unchanged we scale the sex-
tupole strength of the same factor. In Fig. 6a is shown the
phase space topology for the standard parameters used in
this paper:Qx0 = 4.35, ∆Qx = −0.1. In Fig. 6b are
shown: in red the orbits obtained with the scaling Eq. 5 for
Σ = 1/4, that is forQx0 = 4.3375, ∆Qx = 0.025.
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Figure 6: a) Phase space forΣ = 1 (for standard parame-
ters). In b) phase space forΣ = 1/4 (red orbits) overlapped
with orbits in a) for better comparison.

The orbits practically coincide. An important consequence
of the scaling in Eq. 5 results to the adiabaticity parameter
T : asK2 and∆Qx are weaker after the scaling is applied,
the tune of fixed pointsQxf becomes smaller, which in-
creases consequentlyT (see Eq. 1). This effect is shown
in Fig. 7a in the lower curves (Σ = 1/4 green,Σ = 1/8
blue): asT increases, the trapping efficiency decreases and
the two curves exhibit a small emittance increase.

1

1.2

1.4

1.6

1.8

2

2.2

0 100 200 300 400 500

Σ=1/4

Σ=1/8

Synch. osc.

ε∼ x 
 / 

ε∼ x0

5

10

15

0 100 200 300 400 500

Σ=1/4

Σ=1/8

Synch. osc.

%
 p

ar
ti

cl
es

  3
 ∆a) b)

Figure 7: a) Emittance growth forΣ = 1/4 (green),Σ =
1/8 (blue), withQz0 = 10−3 and forQz0 → Qz0/Σ (all
overlapping). b) % of halo particles. The meaning of the
curves is as in a).

In Fig. 7b is plotted the percentage of halo particles (parti-
cles beyond3σx of the beam) showing the same feature as
for Fig. 7a. In order to restore the same trapping efficiency,
the adiabaticity parameterT should return to its original
value after the scaling Eq. 5 is applied. This is readily ob-
tained by scaling the synchrotron tune according to

Qz0 → Qz0/Σ (6)

so that the term∂xf (n)/∂n in Eq. 1 compensates the re-
duction ofQxf . By applying this scaling inQz0 jointly to
Eq. 5 all the lower curves in Figs. 7a,b rise to overlap with
the correspondent original curve obtained forΣ = 1 (red
curves) confirming the interpretation of the scaling. Note
that in Figs. 7a,b the evolution of emittance and % of halo
particles is plotted as function of the number of synchrotron
oscillations. It should be added that forΣ > 1 the scaling
law applies until the shrinking of the DA is too pronounced
and the border of stability is too close to the island separa-
trix.

EFFECT OF THE CHROMATICITY

Including chromaticity complicates the particle dynamics.
The key feature of the space charge driven tune modula-
tion stems from the symmetry of the longitudinal distribu-
tion: the tune modulation has a periodicity, which is half of
the synchrotron one. The tune modulation introduced by
the chromaticity, instead, has the same periodicity as the
synchrotron motion. When space charge maximum detun-
ing and maximum chromaticity detuning are comparable,
the resulting slow modulation of the transverse tunes is the
composition of these two effects, which have different fre-
quencies. In Fig. 8a we show the single particle invariant
in one synchrotron oscillation as for Fig. 2b, but now in-
cluding the effect of the chromaticity. For a particle with
δp/p = 2.3 × 10−3 the natural chromaticity yields a max-
imum detuning ofδQc = 0.01. In Fig. 8b we plot the
islands atz = 0 for δQc = 0.01, where loss of momentum
takes place (red), and forδQc = −0.01, where gain of mo-
mentum occurs (blue). The asymmetry of the position of
the fixed points with respect to half a synchrotron oscilla-
tion is evident. The overall effect is that islands are pushed
further out and increase the halo size. For comparison, in
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Fig. 8b we plot also the islands in absence of chromaticity
(black curve).
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Figure 8: a) Asymmetry of the invariant in one synchrotron
oscillation; b) Transverse islands forδQc = +0.01 (red),
δQc = −0.01 (blue), corresponding to the loss/increase of
particle momentum.

Space charge - chromaticity induced beam loss

An intuitive approach to qualitatively understand the be-
havior of beams in presence of the chromaticity is to con-
sider the chromaticity induced tune shift. IfQx0 + δQc

gets close to the resonance from above, the trapped parti-
cles will be (virtually) brought to infinity. If∆Qc is the
tune-spread induced by the chromaticity, setting the bare
tune in the regionQx,res < Qx0 < Qx,res + ∆Qc will
always allow some particles in the bunch to hit the pipe in
our model of SIS18. A more detailed description of this
beam loss is found in [13]. In Fig. 9a we plot beam loss
when chromaticity is included and the beam pipe is shifted
to 100σx. As the beam used has a chromaticity induced
tune-spread of∆Qc = 0.01, we see a beam loss regime for
4.333 < Qx0 < 4.343. Note also a beam loss region for
4.32 < Qx0 < 4.333.
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Figure 9: a) beam loss induced by chromaticity; b) New
beam loss prediction for the PS-experiment: the black
curve gives the simulated beam loss in presence of chro-
maticity.

EXPERIMENTAL FINDINGS

In the CERN-PS experiment a bunched beam with∆Qx =
0.075 was stored for5 × 105 turns andQy0 = 6.12. The
experimental finding is that the beam undergoes an emit-
tance growth regime for6.28 < Qx0 < 6.32 with a maxi-
mum emittance growth of42% atQx0 = 6.265. For tunes
6.25 < Qx0 < 6.28 a beam loss regime was found with a

maximum beam loss of32% at Qx0 = 6.265. The results
and simulations on this experiment are documented in Ref.
[4, 10, 12]. The maximum beam loss obtained in the sim-
ulation is8% atQx0 = 6.26, ignoring chromaticity. How-
ever, considering the effect of the natural chromaticity we
find that an rms momentum spread of∆p/p = 1.5 × 10−3

induces the maximum tune spread of∆Qc = 0.028, which
corresponds to the width of the observed beam loss regime.
We have then repeated the simulation made in [10] includ-
ing the chromaticity (Fig. 9b). In red we show the mea-
sured beam loss, in green the beam loss computed in [10],
where the effect of chromaticity was absent, and in black
the simulation where the natural chromaticity of the PS
synchrotron is included. The beam loss increases up to
16%, which is about 50% of the total measured beam loss.

OUTLOOK

Trapping phenomena are an important subject in high in-
tensity machines as well as in rings with electron clouds
[14]. We presented here the status of the present under-
standing: simple formulae for asymptotic beam loss and
rms emittance growth have been found. Scaling laws for
trapping induced rms emittance growth are possible and
will be studied in details in the near future. The chromatic-
ity also plays an important role: the CERN-PS experiment
modeling has been considerably improved by including the
chromaticity bringing the beam loss prediction to 50% of
that found in the experiment. The remaining discrepancy
will be the subject of future studies, which should include
fully self-consistent simulations.

Work supported by EU design study (contract 515873-
DIRACsecondary-Beams).
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