
Scaling laws for crossing of space charge resonances ∗

I. Hofmann† , G. Franchetti, GSI, Darmstadt, Germany
S.Y. Lee, Indiana University, Bloomington, USA

Abstract

Crossing of intrinsic space charge resonances may lead
to emittance variations depending on the strength of space
charge, the crossing rate and the lattice. We present scal-
ing laws for the the “Montague-” coupling resonance near
2Qx − 2Qy = 0, and for the fourth order structure reso-
nance near 4Qy = 12, which are expressed in terms of sim-
ple algebraic expressions and benchmarked on fully self-
consistent particle-in-cell simulations in the 2D coasting
beam limit.

INTRODUCTION

In a recent study on the Montague-resonance emittance
coupling it was shown that relatively simple and universal
scaling expressions can be derived by comparing analytical
results and self-consistent particle-in-cell simulations [1].
The Montague-resonance is an example of a space charge
(difference) resonance [2], which is driven by the zeroth
harmonic of the lattice functions, e.g. 2Qx−2Qy ≈ 0. It is
therefore expected to be “immune” to the actual lattice beta
function, which is also confirmed by simulation [1]. For the
fourth order structure resonance, 4Qy ≈ 12, one expects
that the weight of the underlying Fourier harmonic matters,
and that the smoother focusing of a triplet cell shows less
growth than a doublet cell as predicted by expanding the
analytical potential in Ref. [3].

MONTAGUE RESONANCE

In Fig. 1 we first show an example of stop-band using the
final rms emittances, and by varying Q0,x in small steps.
Results are obtained with the MICROMAP-library [4] em-
ploying 50.000 particles and a 128x128 grid with conduct-
ing boundary conditions on a square box of width 6 times
the horizontal rms size of the beam. We present an ex-
ample for parameters borrowed from measurements at the
CERN Proton Synchrotron [5, 1]: a fixed vertical working
point Q0,y = 6.21 and an emittance ratio of εx/εy = 3
are used, while the absolute values of initial normalized
rms emittances are chosen as εx = 2.5π mm-mrad and
εy = 7.5π mm-mrad. The current is set to yield a maxi-
mum vertical tune shift of ΔQy = −0.105 in the center of
a Gaussian distribution, which leads to a maximum hori-
zontal tune shift of ΔQx = −0.061 for the given emittance
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ratio. The plotted values, where each marker is a simula-
tion with different Q0,x, are defined as averages of the rms
emittance values between turn 1000 and 2000, which gives
a good measure of the saturation stage. In order to justify

Figure 1: Static tunes stop-band: final rms emittances for
different values of Q0,x.

the use of constant focusing for the present study, we have
compared it with (linear) periodic focusing and find that
the difference is negligible. The width of the stop-band (in
terms of the horizontal tune width Θ) was found to be [1]:

Θ =
3
2
(
√

εr − 1)ΔQx, (1)

where ΔQx is the incoherent tune spread (in KV-
equivalence, hence half of the maximum tune spread of
a Gaussian beam), and εr is the ratio of initial transverse
emittances (here assumed ≥ 1, without loss of generality).
Similarly the number of betatron periods for emittance ex-
change Nex was found to scale approximately as

N−1
ex ≈ ΔQx

Q0,x
. (2)

In order to derive a scaling law for the dynamical cross-
ing, we proceed in the following way: using the linear de-
pendence on ΔQx in both, Eq. 1 and Eq. 2 under static
conditions, we postulate that the exchange for fast crossing
depends quadratically on ΔQx. In fact, we have found that
the emittance growth is unchanged, if the actual width of
the stop-band - ∝ ΔQx - is crossed during a time, which
is inversely proportional to ΔQx. Hence, the emittance
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growth depends on the quantity

(ΔQx)2

Q̇
, (3)

where Q̇ is defined as tune change per turn. As an example
for dynamical crossing we use the standard case of Fig. 1
and move the working point Q0,x starting from the side of
lower tunes over the range 6.15 ≤ Q0,x ≤ 6.27 enclosing
the stop-band. For this crossing “from below”we apply a
linear tune ramp in time. In Fig. 2 we show the evolution
of emittances as function of the instantaneous tune for two
cases, where the crossing of the same tune range is per-
formed in 100, respectively 1000 turns. It is noted that for
the 100 turns case the final emittances are practically equal;
for the 1000 turns case the final emittances are basically ex-
changed with the initial emittances. The complete picture

Figure 2: Evolution of emittances by crossing the stop-
band dynamically from below over 100 and 1000 turns.

of the final emittances after crossing the band at variable
number of turns is shown in Fig. 3. In the 100 turns case

Figure 3: Final emittances after crossing Q0,x = 6.15 →
6.27 at variable rates.

the essential part of the stop-band in Fig. 1, which has a
tune width of 0.04, is crossed in 33 turns or 205 betatron
periods. This time agrees with the fastest rise time of the
static case, which therefore sets the time-scale needed for a
crossing to just equalize final emittances.

Note that for faster crossing the exchange is only partial,
with a linear dependence on the number of turns. Hence
we find that with N < Nex the emittance exchange is pro-
portional to the inverse tune changing rate. Using Eq. 3
and Eq. 1 for the stop-band width we therefore suggest a
scaling law for the relative growth of the smaller emittance
(here in y)

Δε

ε
= αM

(
√

εr − 1)2ΔQ2
x

Q̇
, (4)

assuming that the full stop-band is crossed at constant rate
and Q̇ is the change of the horizontal tune per turn. αM is
a factor, which we determine from the graph of Fig. 3 as
αM ≈ 1.8.

Crossing in the opposite direction leads to a significantly
suppressed emittance coupling due to the fact that the space
charge de-tuning points also downwards in the tune dia-
gram (details see Ref. [1]).

FOURTH ORDER STRUCTURE
RESONANCE.

This mode is another purely space charge driven reso-
nance, which was first studied by simulation in connection
with heavy ion inertial fusion [6]. There it was suggested
that this mode should be observable in a ring lattice, where
the phase advance per cell of 900 is approached from above
by means of increasing space charge during a bunch com-
pression. It was also found that the fourth order structure
resonance can be in a competition with the envelope in-
stability in a ring, which would normally be observable at
a slightly higher current level [8]. More recently, it was
observed experimentally and confirmed by simulation in a
study of foil injection into the KEK synchrotron [7].

In Fig. 4 we show a phase space plot obtained for a sim-
ulation of the SIS18 lattice, which has 12 super-periods
with the option of triplet or doublet focusing. The verti-
cal phase advance per super-period is close to 1000, hence
Q0,y ≈ 3.3 in normal operation. For our example we
have chosen a tune ramp crossing symmetrically the value
Q0,y = 3. The scatter plot shows the typical result of parti-
cles trapped in fourth order resonance islands, which move
to larger amplitudes to compensate the lowered bare tune
by weaker space charge.

In our attempt to find a scaling law we first study the de-
pendence on the number of turns Δn, here defined as num-
ber of turns to change the tune by ΔQx (in this section un-
derstood as full space charge tune spread of a Gaussian dis-
tribution), for crossing at different levels of space charge.
In contrast with the Montague case we find a quadratic de-
pendence on the turn number for faster crossing, and a lin-
ear regime for slow crossing, with significant growth. This
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Figure 4: Vertical phase space plot after crossing the reso-
nance condition Q0,y = 3.

is interpreted as a result of trapping of particles in the reso-
nance islands, which move to larger amplitudes due to the
combined effect of tune lowering and space charge noted
in Fig. 4. Note that for slower crossing an increasing num-
ber of particles is involved in the trapping. We find that
curves for different values of ΔQx can be brought to over-
lap with good accuracy, if Δn is multiplied by a suitably
chosen scaling factor α as shown in Fig. 5.

As we are mostly interested in the onset region of emit-
tance growth, we focus here on the quadratic regime, which
extends approximately up to a doubling of rms emittances.
Surprisingly, we find that α can be fitted quite well with a
linear expression

α ≈ α0ΔQx. (5)

We find that α0 depends on the specific lattice properties.
For constant focusing, obviously, α0 = 0. For our example
of a relatively smooth triplet focusing we obtain α0 ≈ 9.
For a restricted choice of parameters we have also tested a
doublet focusing with otherwise identical parameters and
found that α0 roughly doubles.

The resulting scaling law in terms of a space charge in-
dependent tune rate is

Δε

ε
≈ α4

ΔQ4
x

Q̇2
, (6)

where α2
0 has been absorbed into the fore-factor, for which

triplet focusing yields α4 ≈ 4 · 10−4, and doublet focus-
ing about four times this value. The behavior of much
stronger response for doublet focusing has been found in
Ref. [3], where a g-factor was introduced as measure for

the strength of the Fourier component in the space charge
potential, which drives the resonance.
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Figure 5: Final rms emittance growth factors as function
of Δn and for different space charge tune shifts (0.2/black,
0.4/red, and 0.8/blue

SUMMARY AND CONCLUSION

Our scaling relationships show that only few parameters
are needed to predict the effect of resonance crossing on
rms emittances. In the Montague case the scaling depends

on ΔQ2
x

Q̇
, and in the fourth order structure resonance case

in the weak emittance growth regime on ΔQ4
x

Q̇2 . In the latter
case the growth is enhanced for a doublet focusing due to
less smooth beta functions.
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