
Calculating Orbit Properties of F-F Cyclotrons 

G. Parzen 

I am going to talk about some analytical results for calculating various orbit 
properties of fixed frequency cyclotrons. A great many people have worked on this, 
and there has been a good deal of discussion about how accurate they are and whether 
it pays to have more accurate formulas. I was not intending to talk about this, but I 
will in my talk try to point out where it is that the accurate formulas give better re
sults and where it is that the formulas derived up to now by various people will serve 
just as well. 

The fir st equation (Fib. 25) simply defines the magnetic field. For theoretical 
purposes we usually like to start out by assuming that the magnetic field is given in 
the median plane, and we give it in Fourier analysis form. The 13 are indications of 

n 
spiraling. If you have no spiraling at all,	 no flaring, the I3 will be zero. The next 

n 
equation simply gives the units used. The re sults are given in cyclotron units. 

Starting with the third equation, the results are given, and I want to explain that 
the results are not given her e in their most complicated and most accurate forms 
obtained; they are given in their mor e simple form, and ther e are more elaborate 
forms available. As it is, they are rather complicated. 

The first result simply is a con
nection between the velowity and the

lie =Ho (t"J +.2H, rr)~[ivB - {3,(rJ] average radius of the equilibrium or
bit, and to a fair approximation, they 

+ 2 H~ en ~[2Ne - BBrrJ] + ••• are equal. The next is an expression 
for the "tune." People have said quite 
a bit about the use of the smooth ap
proximation, and I would like to point 
out that errors arising really have two 
origins. One is the use of the smooth 
approximation which breaks down here 

-=R	 because the tune is near N/2, as Symon 
pointed out. The other is that terms 
have often been neglected in the equa
tion which should not be neglected. 
This is not the most general result 
obtained, but it is the re sult that 
should apply to most cyclotrons being 

= I; - R a •(RH/ + 2 lit) - I	 considered at present. 

+ 2(;-R2)!/(2HH."_R2~'I.H2 Figure 26 gives the expression forNLJ I' 1'-',. 
the axial tune. The E' term has two 
parts which are worth pointing out. r 4 RH,'H, + ;. H,2} 
The fir st term is the so- called Thomas 
term. The second term is the defocusing 
term due to the radial gradient. When 
these two terms very nearly cancel each 
other, the z/tune becom es difficult to 

Fig. 25. Definition s and results. calculate. This last equation is the 
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result for the magnetic field. It tells 
what the average magnetic field must 
be in order	 to give a constant going
around frequency. This is the average 
magnetic field as the function of r in 
terms of the harmonics and the tune. 

Figure 27 gives some numerical 
results to indicate the accuracy of the 
formula. Ther e are some error s in 
the calculations for the next two figures. 
However, the nature of the agreement 
with the theoretical results is still 
roughly as it appears here. This is 
the results on the Oak. Ridge model 
cyclotron. On the left side, the radial 
tune is plotted, and on the right, the 
axial tune. The theoretical results 
given by the formulas just shown, or 
modifications of them, are given by the 
solid line, and the dotted line with the 
circles is the numerical results as 
computed. Ther e are two things worth 
pointing out. One is the agreement at 
the lower end. The tune is nearly 1 
there, but the difference from 1 is 

Fig. 26. Axial tune.	 quite important, because of an adjacent 
resonance, and I think that in Blosser's 
report there is some actual data show

this point. This is one place where the old formulas usually break. down. They
 
not give the difference from 1 very accurately, whereas the present formulas do
 

the difference from 1 rather accurately.
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Fig. 27. Results for the Oak Ridge	 model cyclotron. 
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The other point of difference is the agreement at the upper end. Here you have 
a tune that is very close to one-half of N. (N is 4 here.) This is usually the case 
where the smooth approximation breaks down and the present formulas do fairly 
well here. 

The agreement for the case of the z-tune is shown on the right side of the slide. 
In the central region, Where the z-tune levels off, the Thomas term and the defocusing 
radial gradient term just about cancel each other, and the z-tune becomes difficult to 
compute as small terms in the equation become important. In some machines, the z
focusing is due to the spiraling. No great cancellation of terms occur s and the usually 
quoted formulas for the z-tune will do quite well. This may have been the case for 
Richardson's machine. The same sort of results for the California model are given 
in Figure 28. 

I might say that these models are a rather severa test of theory because of the 
fact that they cover such a large range in tune, and they are rather peculiar fields. 
I would suspect that for the proton machines being considered, the agreement should 
be better. 

Figur e 29 gives the results of using the theory for calculating the average mag
netic field. The first table compares the theoretical and numerical results for the 
average field required to give a constant going-around frequency. The second table 
compares the theoretical and numerical results for the amplitude of the oscillation 
of the equtlfbr ium orbit about the average radius. No formula was given for this on 
the slides before, but formulas are available for this and all the other properties of 
equilibrium orbits and betatron oscillation orbits. 

In Figure 30 are some results which perhaps are not too interesting. These are 
result s which apply only in the very small region near the center, provided the field 
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Fig. 28. Results for the California model. 
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H (r)o

r Numerical Theory 

0 1.0000 1.0000 

. 1 1. 0032 1. 0033 I?« / J 11"« /
 

.2 1. 0145 1. 0149
 

+ •••.3 1. 0348 1. 0356 

.4 1. 0678 1. 0694 

.5 1. 1136 1. 1159 

b r+ ....6 1. 1733 1. 1786 ~ (1") = I
 

.7 1. 2586 1.2716
 

Rmu.- R0..\1. 

Numerical TheoryItf 

0 .0000 .0000 

. 1 .0007 .0009 

.2 .0040 .0042 

.3 .0088 .0090
 

.4 .0147 .0152
 

.5 .0225 .0240
 

.6 .0328 .0342
 

.7 .0470 .0489
 

Fig. 29. Numerical and theoretical Fig. 30. Results which apply 
results for Oak Ridge cyclotron. near the center. 

is accurately described by just an r2 term in the average field and just an r term in 
the flutter field. In this region the results are particularly simple; that is why they 
are written down. The last result is just the conncetion between the average field 
and the flutter field for very small gradient. If you replace N2 by N2 - I, you get a 
result that is supposed to be exact. 

I want to make a few remarks about non-linear dynamics and then be done. In 
cyclotrons of the sort being considered today, there are roughly three non-linear 
res onanc e s , which are due to non-linear terms in the equation when you expand 
·around the equilibrium orbit, which may be of importance. There is a resonanct at 
v = N/3, which is particularly important if you have a three-sector cyclotron. Then 

r 
there is a resonance at v =N/4, which arises if you have a four-sector cyclotron.

r 
Also there is the difference resonance, sometimes called the Walkinshaw resonance, 
2v = v ' These are the three resonances which are likely to arise in cyclotron dez r 
sing. I do not have any slides and so I just want to write down the results for the case 
of 1/3 resonance to show you what these formulas look like. 
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The stability limit amplitude. Au for the 'J r = N/3 resonance is given by 

4 I 'J r o - 1 I 
B 

B = 1/20 - R2)l/2 IR GI" + 4 R GI" + 2 GI I . 

= H -i~1GI I e 

where v is the radial tune for small amplitude s , and we assume N = 3. The tune 
r o 

v varies with amplitude according to 
r 

v 2 l+(v 2_l)[l_(~)2]1/2 
r r 0 A 

L 

When A exceeds A L • 'J r becomes i:rnaginary in the last equation and the i:rnaginary 
part gives the exponential growth of the radial arnpl.i.tude , 

A program is being written at MURA which will evaluate the theoretical formulas. 
MURA also has a program called "Ill Tempered Five." proposed by F. T. Cole, which 
will do these calculations exactly, and which Syrnon will talk about later. There is no 
really final MURA report which contains the information in its final form, but I will 
write down what is available. There is a general report, MURA-397, which is on the 
theory of a general accelerator, and these results are based on the results in here. 
However. there are certain corrections which are not included in this report. There 
is a mimeographed note, of which I have copies, which contains the results on the 
slides. 
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