
Orbit Stability in Three- and Four-Sector Cyclotrons 

M. M. Gordon 

Most of the work I am reporting on was actually done nearly a year ago and the 
results were presented informally at the annual ORNL Information Meeting last June. 
A fairly extensive account of this work can be found in the section on "Radial Stability" 
in ORNL Report 2648, "The Oak Ridge Relativistic Isochronous Cyclotron." This work 
is now, I believe, of historical interest principally in that it was the first work to indi
cate definitely the feasibility of the 3-sector medium-energy cyclotron as far as orbit 
stability considerations are concerned. Since that time a considerable amount of this 
kind of work has been done by those groups interested in the 3-seetor machine, for 
example, that just reported by Blosser. There is no longer any doubt about the orbit 
stability of the 3-sector, weak-spiral cyclotron. As a result, this type of machine 
now appears more promising than the 4-sector (tight-spiral) machine for the medium 
energy region. 

Let me explain briefly how we came to be involved in this work. Welton has for 
some time now been interested in the theoretical problems associated with a high 
energy proton cyclotron and under his direction a variety of Oracle computer codes 
have been developed for solving these problems. While I was at ORNL last year, 
most of the work we did was for an 8-sector machine which would start out in the 
center with four sectors. An alternative possibility was a 6-sector machine starting 
out with three sectors in the center. Both would accelerate protons up to the integral 
resonance v = z which comes at 800 to 850 Mev for the 8-sector machine and at 

r 
about 100 Mev less in the 6-sector one. The disadvantage of the lower energy in the 
6-sector case is counter balanced by the resultant decrease in size and cost. Just 
about a year ago we began to worry about the various problems associated with the 
central, low energy, region of the big machine. Here we were faced with the ques
tion of orbit stability near v = 1 in either geometry. (Let me note, however, that 

r 
conditions at the center of a big machine are quire different from those of the lower 
energy machines.) 

Experience with the ORNL 4-sector electron model, as well as the Harwell cal
culations, have amply demonstrated the dangers of the third-integral subharmonic 
resonance v = 4/3. These results, together with the calculations done by Stahelin 

r 
at Illinois, made us quite wary of the v r = 3/3 resonance which would be encountered 
at the center of a 3-sector machine. Since the facilities were readily available we 
made some orbit studies with the Oracle computer to check into this matter our
selves. The high degree of orbit stability we discovered was somewhat surprising. 
The apparent cause of this stability was the fact that the (v r - I) values were con
siderably higher than would be expected from the usual smooth-approximation for
mula. This effect was particularly marked in the 3-sector case and was the first 
indication we had that a 3-sector machine might, after all, have adequate orbit 
stability near its center. 

It was just at that time when Cohen and Blosser began working on the basic de
sign for the medium energy cyclotron, now dubbed the ORIC. They were embroiled 
in an argument over the relative virtues of the 3- and 4-sector geometries, and the 
crucial point of contention was orbit stability. Armed with the above mentioned re
sults we stepped into the argument and suggested working some orbit studies with 
the computer which might help resolve the stability problem. It is the results of 
these first preliminary orbit stability computations that I will present today. 
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MEDIANPLANE MAGNETIC FIELD: The ORIC is designed to accel
erate a variety of ions from protons

8(r, 9) = ~ [1 + f(r)cos 4(9 - 24r)] on up to heavy ions. We chose N 4 + 
ions for these first studies since their 

FLUTTER: large mass results in v r being quite 

r2 )2 close to unity, according to the smooth 
f(r)=fO( r 2+a2 approximation, over the entire energy 

f O= 0 .167 ; a=0.018 range of the machine. Thus, we felt 
that if nonlinear orbit instability were 
a problem, it would show up mostLENGTH UNIT: 
markedly in the case of nitrogen ions. 

C/wo" 280 in. 

Fig. 50. Median plane magnetic field, for We consider first the results ob
four-sector tight-spiral machine (N 4+ tained for the 4-sector geometry. In 
ions). Figure 50 we have the median plane 

field B (r,e) used in these computa
tions. The sinusoidal form of the 

flutter field was required to fit in with the available computer code. The flutter f (r) 
and spiral t:(r) were chosen by Cohen to fit what were thought would be the condi
tions in the machine, using as a guide the model magnet studies and computations of 
Stahelin at Illinois. This is what we would call a weak-flutter, tight-spiral machine. 
The unit of length is the so-called cyclotron unit (here 280 in.) and the particles are 
accelerated out to an r-value of about 0.11. Thus, the total angle of rotation of the 
spiral is about 2.64 radians or 1500 • The linear Archimedean spiral could not extend 
all the way in to R ,. 0, but we can assume that it is cut off. The form of f (r) used 
seems to fit the data quite well; the parameter a is comparable to the magnet gap. 
Note that f(r) goes to zero at the center as r 4 , as it should for a 4-sector geometry. 
The form of the average field (1 - r 2) -1/2 is what one would expect for zero flutter; 
since the flutter is so small here, it should suffice. 

We took this field and ran it through the lIe q uili b r i um o rbtt" code about which 
you hear this morning. Some of the resultant data are shown in Figure 51. Here p 
is the momentum in MC units, E k is the energy in Mev, t is the rotation period in 
units of the rf period, V z is the axial focusing frequency, v is the actual radial osr 
cillation frequency, and v ~ is that obtained from the smooth approximation. Let us 
note first that the degree of isochronism is adequate (Le ,; t ,. 1). Next we note that 
the values of v z climb with increasing energy. This increase comes about from the 
fact that the same flutter - spiral must focus both protons and N ions in this machine 
while the field index, k, is much smaller for the heavy ions. The larger values of 
v z are actually undesirable because of the dangers of the coupling resonance v r ,. V z' 

as we shall show later. Finally we note that the last two columns of Figure 51 show 
that (v r - 1) is actually much larger 

p II z II 
r 

than the smooth approximation values, 
an effect which is even more pronounced 

0.020 2.6 0.9998 0.~3 1.0011 1.0002 for the 3-sector geometry as has al 
0.045 13.0 0.9992 0.1581 1.0038 1.0010 ready been reported several times 
0.070 33.0 0.9991 0.2635 1.0082 1.0025 today. 
0.095 59.0 0.9991 0.3653 1.0147 1.0045 

0.120 94.0 0.9991 0.4660 1.0230 1.0072 At this point, let me pause to inter
ject a few remarks on analytical for
mulas for calculating v r. In the fall of 

Fig. 51. Orbit parameters for 1957, I had made a rather painstaking 
4S-TS machine. analytical calculation to derive an 

67
 

Proceedings of Sector-Focused Cyclotrons, Sea Island, Georgia, USA, 1959

CYC59A15



accurate formula for v • The motivation for this work came from our studies of the 
r 

big machine where we found that the energy at which v r = 2 depended· quite critically 
on the details of spiral and flutter assumed; I wanted some analytical guide in under
standing our computer results. I used the results of a variational method for deter
mining the form of the equilibrium orbit which I had worked out in the Spring of 1957. 
This method has the advantage of reducing the problem to straight-forward algebra as 
well as divorcing the results from the determination of other momentum as a function 
of radius. 

The form of the median plane field used was: 

B (r ,8l = B (d + B} (d cos N [8 - r, (d]o 

with B o' B}, and r, arbitrary. So I carried through the calculation of v r carefully 
keeping all terms that could contribute to the result to order (lIN) 2; I obtained 

v 2 1 + k + (£2/2N2) [k 1 + k 2 + 5 k} 
r 0 1 i 

- k k} + 3 k T2 + 3 1 2 + 3 
0 0 

+ £2 012 k} + 1/2 k} T2 - 2 - 3/8 T2 - 1/8 T 4l] 

Where: 

r B}/Bo 

T R (d Odd 

k (riB) (d B Idd 
0 0 0 

k} (r IB} ) (d B}/dd 

k} (r 2/B}) (d2B}/dr 2 ).

i
 

All quantities are evaluated at r = R. the mean radius of the equilibrium orbit. 
This equation checked quite well over results for the 8-sector machine and I put it 
aside. Just recently I thought of checking this equation against the results of our 
3- and 4-sector computer calculations of vr" To do this I had to make an important 
change in the formula to take into account the closeness of V r to (N/2). This has the 
effect of greatly enhancing the alternating gradient effect. The resulting increase in 
v 2 over and above that given by the formula above is: 

r 

tw 2 = A/(N 2 - 4v 2) - (A + Cl/N2,
r r 

where: 

A 112 £2 N2 T2 + 1/2 £2 (k} + 3/2)2 

C = 2 £2 T2 (l + kol. 

Using these formulas we obtained a value of v r 1.0010 as against the computer 
value 1.0011 for the first p value in Figure 51. 
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Returning now to the question of 
OSCILLATION: orbit stability, we have in Figure 52 a 

x = A cos ((J + 4» very brief sketch of the nonlinear res
onance theory as it applies to the 

PERTURBATION: v r2 ';' 4/4 case. (For simplicity, we 
16 C x 3 cos 49 have omitted the X 4 term.) The form 

of the "Irrvaz-Iant" helps us understandFIRST-ORDER EQUATIONS: 
the nature of the phase plots. 

dA = CA3 sin 44> 
d9 

In Figure 53 we have the phase
~: =(vr-1)+CA2coS44> 

plots obtained at two energies for this 
4-sector geometry. The nature and 

INVARIANT: significance of these plots has already 
H (A. 4» = 1,12 (vr -1) A 2 + 1;4 CA 4 cos 4 4> been discussed several times today. 

We start an orbit out with a given dis
STABILITY LIMIT: placement x from the equilibrium orbit 

IIr -1 )1/2 
Ao = ( -C-_	 and plot to the values of Px versus x 

once per sector as the trajectory is 
Fig. 52. Radial stability near v r = 4/4.	 being computed by the Oracle. The 

fourfold symmetry in these plots is 
characteristic of the fourth-order sub

resonance (see Fig. 52). The angular separation between adjacent points is a meas
ure of (v r - 1). The squarish closed figures represent stable orbits; the open figures 
unstable orbits. We can therefore estimate the range of stable amplitudes from 
examining these plots. Full scale in these plots represents a displacement of 4.4 
inches. From these plots and additional ones at other energies we were able to con
clude that amplitudes of oscillation up to about 2 inches would be stable in this ma
chine provided the effects of acceleration were taken into account. 

The calculations on the 3-sector geometry were made immediately after the 
4-sector work just described. In Figure 54 we see the analytical form of the 3-sec
tor magnetic field used for the computations. Here again this form was restricted 
by the available computer code. The specific parameters here were determined by 
Cohen to fit as well as possible the model magnet measurements of Blosser. The 
spiral here is quadratic in rand " w eak"; that is, the total spiral angle reaches only 

13 Mev-N 4 +IONS	 60 Mev-N 4 + IONS 

Fig. 53. Phase plots for four-sector machine. 

69 

Proceedings of Sector-Focused Cyclotrons, Sea Island, Georgia, USA, 1959

CYC59A15



MEDIAN PLANE MAGNETIC FIELD (0.01 < r < 0.10) 

et», 9) = B(r) [I + f(r) cos 3(9 - t)] 

B(r) = 0.99383 + 0.00655 cos (57.8 r) 

f(r) = -0.096 +14.0r - 91.8 r 2 

2t - 32.2 r 

Fig. 54. Analytical form of three-sector, 
weak-spiral machine for N 4+ ions. 

P Ek II 1 + k~ r 

0.02 2.6 1.0005 0.1420 1.0090 0.9930 0.147 

0.03 5.9 1.0004 0.21-40 1.0202 0.9887 0.241 

0.04 10.0 1.0002 0.2676 1.0315 0.9887 0.317 

0.05 16.0 0.9998 0.3043 1.0409 0.9952 0.374 

0.06 23.0 0.9992 0.3293 1.0463 1.0074 0.414 

0.07 32.0 0.9988 0.3503 1.044S 1.0210 0.434 

0.08 42.0 0.9993 0.3754 1.0341 1.0304 0.436 

0.09 53.0 1.0017 0.-4086 1.0150 1.0302 0.420 

Fig. 55. Orbit parameters for 
3S-WS machine. 

OSCILLATION: 

x - A cos (9 + 4» 

PERTURBATION: 
2a C x cos 39 

FIRST-ORDER EQUATIONS 

dA == CA 2 sin 34>
d9 

~ - (vr -1) + CA cos 34> 

INVARIANT: 

H(A, 4» - Y2 (vr-O A2 +Y3 CA3 cos 3'" 
STABILITY LIMIT: 

II,. - I 
Ao - - c-

Fig. 56. Radial Stability near V r = 3/3. 

about 25 0 at the outside (r ,. 0.11). It 
is hard to gauge the behavior of the 
flutter, f, from its analytical form, but 
this will be made clearer in Figure 55, 
where numerical values are given. The 
behavior of the average field :s- is in
teresting. It falls off with increasing r 
for almost half the machine. This is 
due to the fact that f and df/dr are 
large and N = 3 is small here. The 
orbits are then quite triangular and 
the average field along the orbit is sig
nificantly greater than the value of the 
mean orbit radius. 

The output of the equilibrium orbit 
code for this 3-sector field is shown in 
Figure 55. The explanation of the sym
bols is the same as that given above for 
Figure 51. The last column shows the 
values of the flutter, f. The values of 
1 + k shown represent v 2 in the smooth 

r 
approximation limit, and it is seen that 
these values are less than unity over 
the first part of the machine where the 
average field is falling off. (With ref
erence to Symon's comments, we wish 
to apologize for the misuse of the term 
"smooth approximation." What we have 
really done here is to neglect all terms 
of order N· 2 in the formula given above 
for v r~ and this implies not only the 
smooth approximation but also nearly 
circular orbits.) The actual values of 
v r shown are markedly greater than 
unity. The importance of the flutter 
gradient, as well as the flutter itself, 
can be seen from the way v r rises and 
then falls along with the corresponding 
f values shown. Using the formula 
given above for vr 2 , we obtained at 
p = 0.03 the value v = 1.0166 com
pared with the value 

r
V r = 1.0202 in 

Figure 55. The correction for the 
nearness of the V r = 3/2 stop-band is 
very important here. 

We consider now the results of the orbit stability calculations for the v r = 3/3 
resonance. The'theory is summarized in Figure 56, the analogue of Figure 52 for 
the 4-sector case. We shall not discuss the theory here to save time. Such a dis
cussion has already been given today by Smith. 
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10 Mev-N4 +IONS	 42 Mev-N 4 +IONS 

Fig. 57. Phase plots for three-sector machine. 

In Figure 57, we have shown two of the phase plots obtained for this 3-sector 
field at tw 0 different energies. The interpretation of these plots has already been 
discussed in connection with Figure 53 and by the previous speakers. The scale of 
these plots is the same as that for Figure 53. Our conclusion from these results is 
that the 3-sector field gives orbit stability quite comparable to that of the 4-sector 
field as far as motion in the median plane goe:;. 

This then was the first real evidence we had that a 3-sector machine would have 
adequate radial stability. The superiority of the 3 - sector over the 4- sector machine 
with regard to orbit stability did not manifest itself, however, until we investigated 
the question of axial stability. 

It is hoped that some type of regenerative beam deflection system can be worked 
out for this machine. Such a system seems almost imperative for 75-Mev protons. 
The essential feature of the regenerative process is a progressive build-up of large 
radial orbit displacements. The main problem we are faced with here is whether 
axial stability can be maintained during this process. The nonlinear coupling res
onances, 2 V = v and 2 V z = N - (N-l) v becomes active as the radial oscillationz r r 
amplitude increases and may lead to axial instability. 

Using the 4-sector field discussed 
0.05	 before (see Fig. 50) we made a computer 

run to check into this question. We 
0.04 

chose an energy near the outside of 
0.03	 the machine and started an orbit out 

with a radial displacement of about 2J0.02	 

1/Z	 i.n,; which our previous work had shown 
0.01	 would lead to a radially stable orbit. 

r-, 1/\ r <, V'"\ For this run the orbit was also given a
 
0 

<; / "-/ small initial axial displacement (about
~	 \1-0.1	 0.5 in.). As the run progressed the com
puter recorded the axial displacements,

-0.2	 ~-
o 2 3 4 5 6 7 8 9 10 z, at intervals of once per sector. The 

NUMBER OF REVOLUTIONS resultant z-values are shown plotted in 
Fig. 58. Effect of coupling resonances en Figure 58 as a function of the number 

axial oscillations (for 4S-TS machine). of revolutions. If there were no coupling 
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effects, this curve would be a smooth sinusoid of frequency \l z = 0.3 oscillations per 
revolution. The curve in Figure 58 shows, however, that the coupling effects are 
drastic. The V z value can be seen to shift in and out of the resonant value \l = 1/2

z 
and as it does so the amplitude of the axial motion grows rapidly. Thus, the 4
sector (tight-spiral) machine looked like a very bad risk as far as beam deflection 
goes. This conclusion corroborated the extensive work done at Harwell on coupling 
resonances. 

A very similar computer run was made for the 3-sector field discussed above, 
(Fig. 54). The results here were strikingly different. The (once-per-sector) z
values followed a smooth sinusoid which was quite constant in amplitude and fre
quency over the length of the run (about 15 revolutions). This result was most en
couraging. It was this feature, along with the others mentioned earlier by Cohen, 
his talk which lead the ORNL group to adopt a 3-sector geometry for their machine. 

72 

Proceedings of Sector-Focused Cyclotrons, Sea Island, Georgia, USA, 1959

CYC59A15


