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Orbit Dynamics for a Four-Spiral-Sector Cyclotron 

K. M. Terwilliger 

I wish to report on some calculations I made last year on stability limits and 
orbits for a cyclotron design for the University of Michigan. This machine was de
signed with a somewhat different philosophy than those that have been presented here. 
We wanted to make a 40-Mev deuteron machine giving a ~ of only about 0.2 which is 
quite small; it could be quite a conservative machine. We decided to use the Stahelin
type flat spiral shim design* the spiral sector variety with very small flutter, the 
point being to keep away from worries about satuartion effects. This was to be the 
key point. So we designed for fairly low fields, about 15 kilogauss, and a maximum 
flutter of about 7-1/2%. To do this, of course, we had to have quite a lot of spiral. 
We chose 4-sectors. Figure 59 indicates the design of this machine. It is quite large. 
The extraction radius is about 34 inches. The spiral is quite tight, as you can see, 
going out to a maximum tan y (defined previously) of about 4. 

The determinations of the frequencies of oscillation and stability limits were 
performed on the MURA IBM 704 computer using the well-tempered-V program with 
scaling fields, a fair approximation here. I would like to discuss the results briefly 
now. First, the betatron oscillation frequencies. The smooth approximation results 
were remarkably borne out, much more so than indicated before in the discussions. 

For example, the smooth approximation 
for \Ix and vygives 
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where the parameters are defined from 
the median plane scaling field. 
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At the maximum radius the parameters- ---~..-.W are 

k '"' 0.043, f '"' 0.075, tan y = 4. 
f------- -- - 83" ----- --------< 

Fig. 59. Schematic diagram of a 4-spiral A comparison of the smooth approxima
sector design for 40-Mev deuterons, with tion and the computer results for these 
flat shims cut in an Archimedean spiral. parameters is: 

*Bluemel, Carroll. and Stahelin, Technical Report No.2, Navy Contract 1834 (05). 
University of Illinois. 
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Fig. 60. x-motion phase curve; x is \ 
measured in units of the radius; 
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Fig. 61. A large amplitude x-motion 
phase curve, the central curve of Fig. 
60. 

Smooth App. Computer 

v 1.022 1.028x 
v y 0.223 0.231 

Now for the stability limit, which 
was what we were really interested in, 
since this is a very tight spiral machine 
We started by running some phase plots 
with zero y-motion. Here is such a 
phase plot (Fig. 60). The point near the 
center is a fixed point; there is only a 
small amount of displacement from 
because the flutter is so small. The 
curve, as we will see, is about halfway 
out to the stability limit. The particles, 
after processing around, seem to fall 
this curve with very little scatter. 

Now to investigate what happens 
with larger oscillations still without any 
y-motion. Figure 61 shows what hap
pened as we doubled the initial x-ampli
tude. The inner curve is the previous 
phase plot. The character of the mo
tion changed quite violently. as you can 
see. The re ason has been indicated in 
previous talks. Inside these arms are 
undoubtedly four stable fixed points, 
corresponding to an orbit that would 
repeat after one revolution. or after 
four sectors. Around these four fixed 
points are stable island-like curves, 
and in between these islands and the 
central curve are four unstable fixed 
points. This is all in agreement with 
the pictures drawn in the 3-sector case 
Blosser talked about. This outside 
curve is an apparently stable envelope 
around the five inner islands. Although 
in the intermediate region the motion 
perhaps is considered unstable, it 
really isn't over-all. You have to take 
this into account in any extraction 
process. 

We consider now what happens as 
we add a bit of y-motion to the problem. 
The previous work here was for zero 
y-amplitude. We started with that pre
vious x-curve we had before (in Fig. 
60), the one with X '" 5 x 10 -2, ando 
increased the initial y-amplitude to see 
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where we would run into trouble. As 
N·. indicated in Figure 62. the original 
l/NW. tanY.4 

.6~ k•.043	 y-frequency started out about 0.25 and 
1·.075 -a
Xo·Sxl0	 increased as the y-oscillation ampli

.51 ".1.00 tude increased. This is as you would• 

.4 f- UNSTABlE expect. on a qualitative basis. because
 

,:- you are seeing a larger flutter as you

( l'. - 2", • 0 RESONANCE) 

.3 •	 get off the median plane, and the y-fre.. • 
... ·1.027	 quency goes up with the flutter. Vx ap

.2 l 
parently has very little dependence on 

.If- the y-amplitude. at least for a while • 

I I I I I It stays essentially constant in this 
0 

4 5 8 9 100 I	 -, region at about 1.0Z7. This is alsoY,	 x 10 

reasonable. since in the smooth ap
Fig. 62. y-betatron oscillation frequency 

proximation vx does not depend on the 
as a function of initial y-amplitude. 

flutter. 

After we got past the point of ini
tial y-amplitude of Z% of the radius. 
2 x 10 -2, the next point we ran was 
about 5 x 10 -2 and the motion was 
clearly unstable. We then doubled the 
amplitude and got a sort of locked-in 
motion which was clearly a coupling 

U y 1/2~---- resonance. The unstable motion,
 
-=;r y ,,5 x 10 -2, took off in about two or
 

o 
three revolutions. so clearly you can
not work with y-oscillations of this 
magnitude. Anything below this un
stable region is perfectly satisfactory. 
There both the x-motion and the y-motion 
fell pretty well on invariant curves. 

The type of instability involved can 
be understood most simply with the aid 

Fig. 63. Sector resonance plot.	 of a sector resonance plot (Fig. 63). 
The quantity a is the betatron phase 
change per sector and is related to v by 

a/n = Z1l/N. (So here a/n = v/Z, with N = 4.) The lines correspond to the major sector 
resonances. For small y-amplitude, the Of s for the given parameters are indicated by 
the dot, just above the 40 x = 2n (or Vx = 1) resonance. The resonance which causes 
the trouble in the coupling is the ax - 2 cry = 0 resonance, called the Walkinshaw 
resonance. On this resonance the x-frequency is twice the y-frequency. As we in
crease the y-amplitude. the tune point moves up toward this coupling resonance, 
parallel to the 4 Ox = 2it resonance line. until the motion becomes unstable or locked
in. 

One more thing we did was investigate the motion at different radii. adding a field 
perturbation. We applied a first harmonic ripple to the field, to see if this changed the 
stability limits. With a perturbation. which we estimated would drive the equilbrium 
o.rbits to an amplitude of 1 em, I found that the motion at different radii. (full radius, 
half. one-quarter. and one-eighth) was perfectly stable. even with coupled betatron os
cillation amplitudes of 2 em. Since we hope to keep our oscillation amplitudes less than 
2 ern during acceleration. I would think this would be a fairly reasonable design. 
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