
Beam Deflection with the Aid of a Nonlinear Resonance 

M. M. Gordon* 

We heard this morning about beam extraction by more or less standard meth
ods. I would like to describe now what we consider a rather unconventional tech
nique, which we hope will be technically well adapted to these sector machines. It 
is a modification of the basic regenerative idea of the Tuck, Teng, and LeCouteur 
scheme wherein we try to make use of nonlinear resonances that occur in these 
machines. We heard lots of talk yesterday about all of the problems and harrass
ments that can arise from these resonances, and what I shall point out here is that 
perhaps we can make use of nonlinear resonances to help us get the beam out of 
the machine. 

Basically the idea is quite simple. The nonlinear resonance has the property 
that it will build up radial oscillation amplitude in the machine at a rapidly accel
erated rate, so that one could in principle get a large turn separation from this ef
fect. However, since these resonances are nonlinear in character their effect is 
very small for small amplitudes of uscillation and only become significant as the 
amplitudes get larger. Thus, some sort of additional field bump must be present 
to start the oscillations off and to drive them up to an amplitude where the nonlin
earity can take over and produce a rapidly accelerated growth rate in these radial 
oscillations. This, then, is the basic idea. 

The difficulty with this scheme, as we soon discovered (and which is also the 
difficulty with the standard deflection technique), is in maintaining axial stability 
in the process of getting the beam deflected. In this technique the radial oscillation 
amplitudes are built up to quite sizable amounts, and nonlinear coupling resonances 
that would ordinarily have small effect come in with increasingly stronger and 
stronger effect. If these effects persist long enough, they destroy the axial stability 
of the beam. 

In the medium energy cyclotron, the value of "r rises above unity as the parti
cles accelerate out from the center, which is all very well for getting away from 
the nonlinear resonances effects. However, if we want to make use of these effects 
for beam deflection we must, of course, drive the value of "r back toward unity near 
the outside of the machine. We must tailor the field in some way to accomplish 
this. First, we should have the average field drop off. In addition, to avoid raising 
the value of "z the flutter field should drop off at the same time which moreover 
will enhance the drop in" r' We want to keep the value of "z low, because the large 
radial oscillations, together with the coupling resonance, will tend to make the value 
of "z rise toward the critical value of 0.5, which should be avoided. 

This manipulation of the field will lead to non-isochronous conditions and it 
will be a problem to get the beam out before there is too much loss of phase. We 
could tailor the field 'previous to that so as to gain sufficient phase such that the 
phase loss during the extraction essentially just brings the beam back past the peak 
of the voltage wave. 

*This work was performed at ORNL during the academic year 1957-58 while the au
thor was on leave from the University of Florida. Present address: Department of 
Physics and Astronomy, Michigan state University, East Lansing, Michigan. 
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If possible, what we would like to do, in addition to getting "r back down to 
unity, is to manipulate the field in more subtle ways to strengthen the instability 
arising from the nonlinear radial resonances (either the 3/3 or the 4/4), and at 
the same time try to tailor these fields to minimize the effects of coupling reso
nances. 

I want to present some calculations relative to this type of deflection scheme 
which were made specifically for the high energy cyclotron being developed at 
ORNL. Here the particles are accelerated up to vr = 2, which in this 8-sector 
machine I am going to talk about occurred at around 800 Mev. Thus, there is no 
problem in getting the 'particl.e to the resonance. Since it is an 8-sector machine, 
Vr = 2 is an 8/4 cubic nonlinear essential resonance. Although this work does not 
apply directly to the medium energy cyclotron, it will, I think, point out the sort of 
procedures one has to go through in order to see whether such a system is feasible 
in a particular machine. 

Figure 229 shows the form of the 8-sector field in the median plane that we 
put into the computer. It is a weak spiral field in which the spiral angle is just r 2. 

The value of the flutter, f(r), is adjusted within certain limitations to give a fairly 
flat Vz energy curve, the value of "z being about 0.25 in this range. At the bottom 
of the figure we have the data at the resonance when vr = 2, or 8/4. The momen
tum, energy, v z value, and average radius of the orbit are given here. The cyclo
tron unit in this machine is about 600 em, and so the radius of this orbit is about 

600 cm, and so the radius of this orbit 
is about 500 cm. Also tan a(some
times referred to as y) is shown and 
it can be seen that the spiral is quite 
moderate. 

MEDIAN PLANE FIELD: (cyclotron units) Figure 230 shows an outline of the 
nonlinear resonance theory as it applies 
to the vr = 8/4 case. To save time we 
shall not discuss this material. The 
only thing we should point out right 
now is that one could anticipate a rise 

WHERE f(r) == r2 + 0.5896 r - 0.1660� in amplitude which is proportional to 
the cube of the amplitude if the phase 
of the oscillation is just right. 

FOR Vr == 8/4 
In Figure 231 we have the phase 

p == 1.5566 mc plot obtained at the 8/4 resonance. 
2 What we did was to put particles inEK == 0.8502 mc

orbits starting out with different am

Vz == 0.2482 plitudes and phases, and plot once per 
revolution (once per oscillation actu

r = 0.8413 ally) the value of Pr vs r as obtained 
from the computer for each value of 

f{f) == 1.038 orbit. What we have in this figure is 
actually only one-quarter of the total 

Ton a == 1.415 phase space. The particular value in 
the machine at which this phase plot 

Fig. 229. Form of 8-sector field in was recorded was specifically hunted 
median plane. for. The phase points are all moving 
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APPROXIMATE INVARIANT FOR Zlr = 8/4 :� 

COA
4 C1A

4�H(A,epl = - sin 4ep 

RESULTING EQUATIONS OF MOTION: 

dA2 ()H 4dB = - d<p - 4C,A cos 4ep 

2-2C 2 
:: = ~~2 = 2 CoA 1A sin 4ep 

Fig. 23 O. Nonlinear resonance theory 
applied to vr .. 8/4. 
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Fig. 231. Phase curves for 8/4 
resonance. 
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Fig. 232. Rate of growth of radial am
plitude with radius, along an asymptote 
in the phase plot dr/dn .. C(r - r O ) 3. 

out to the right along the asymptote 
shown. They are curling in from above 
and from below. At this particular e 
the asymptote leads to essentially pure 
radial growth. To give you an idea of 
the size of the picture, the maximum 
amplitude corresponds to about 50 cm, 
and as noted before the mean radius is 
about 500 centimeters. Thus very large 
radial amplitudes are obtained in this 
manner. 

The next thing we did was to ana
lyze the behavior at one particular or
bit which follows quite close to the 
asymptote. We wanted to find out how 
large the growth rates were for this 
orbit. We took the successive r-values, 
for that particular orbit as obtained 
from the computer, and by differencing 
these values calculated a derivative. 
Taking the cube root of that derivative 
and just simply plotting it against the 
4-values we should obtain a straight 
line. As you can see in Figure 232, we 
do, indeed, obtain a fairly good straight 
line, showing that the growth rate as 
anticipated is proportional to the cube 
of the amplitude. When this line is ex
trapolated back down it does hit fairly 
close to the equilibrium orbit, and 
from its slope we can determine the 
growth rate constant. 

In Figure 233 we used the data 
from Figure 232 to determine the 
growth-rate constant, which I call C 
here. We determined from integrating 
the little equation shown the "lifetime," 
tstx, of the particle, that is, if started 
out with a certain initial amplitude A o' 
!:;n is the number of turns the particle 
will make before its amplitude becomes 
infinite. At the bottom of the figure 
there is a small table showing the ef
fect of the nonlinearity along the as
ymptote. You can see that for 1 ern 
initial amplitude the particle will last 
in that orbit for 1,000 turns. Of course, 
by that time it would have accelerated 
past the resonance. On the other hand, 
you see that for 10 ern initial amplitude 
it would last only a little over 10 turns. 
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ALONG ASYMPTOTE: 
INTEGRAL RESONANCE FIELD BUMP

~=CA3; C=173. 

! r2sin(28+y)8BZ =~n= _1_ 

o2CA2 
!� = E i.Hr>/f2 

E = 10-3 
Ao(cm) 0.1 1.0 2.0 5.0 10.0 20.0 

5 3260. 2/turn~n 10 10 41.7 10.4 2.6� ACCELERATION: 10-3 mc

4 RF gaps� 
(cyclotron unit> 600 em)� 

Fig. 233. Determination of the growth Fig. 234. Introduction of field bump. 
rate constant, C. 

Thus it can be seen that if one had a mechanism for building up the radial amplitudes 
so that this nonlinear driving force took app reciable effect, one could in principle 
get very large turn separations, clear a septum, and get the beam deflected. 

Next, we decided to make some prototype beam deflection runs of a semi
quantitative nature. We had to adapt our calculations to fit the restrictions of the 
computer. Figure 234 shows the field "bump" which was added in a form dictated 
by the computer code. The strength of this bump, E, was chosen to be 10-3 of the 
average field at that particular radius. The value of gamma was selected so that 
the field bump would act in such a way as to drive the particles on each successive 
revolution further out along the asymptote described above. For these runs we set 
up the computer for an acceleration rate of 10-3 which corresponds to about I-Mev/ 
turn. 

32 ~ We started a particle off on the� 
! I equilibrium orbit 16 revolutions be�!

28� fore the resonance. This 16 revolu
tions represents in a certain sense the 

I� I 
24� effective half-width of the integral res,� . 

I onance as a result of the acceleration 
20 rate. In Figure 235 we show the re

sults of this orbit run. In this figure
] 

16� we have plotted the radial displacement. 
""""" in centimeters as a function of the num

12 
/'~ ber of revolutions. Here we see that 

.,'" 
the particle starts out on the equilib""",..", .--� rium orbit, and the jumps on successive8 

turns are initially linear, which is what.Y'~ ---
~~ 

4� one would expect if the field bump were.
v" active all by itself. One can see as the 

~/ 
~ 

amplitude gets larger the nonlinearityo 
o 2 4 6 8 12 14 takes over and the points rise above the 

n(rell) 

straight line. The last point, which 
Fig. 235. 8/4 resonance driven bye 13 can't be shown, is so high (54 em) it� 

cos 20 (E = 10 -3).� just wouldn't fit on the curve. This 
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r esult indicated to us that the cOInbina
A(cm) tion of the integral resonance force 

34 58 8 4 114 15 3 22 I 54.2 II 
plus the nonlinearity would rne s h to

0.8� I-- If' 
_/..-_\! 1 -l gether and produce the large turn sep10.4 -~F £~ -f-~\-1 f\~ f--- aration required for beam deflection. 

Z 0 
~l-'i f--~1- tJ _
- '-- 0.4 ~i=t	 rl ~-~ -

The next thing that we had to ex
- 0.8 -\.� =1_ + iFS-V' 

arriine was axial stability which is, of 
2 3 6 8 10 12 14 16 o 

n (turns ) course, a very serious p r o ble m , We 
Fig. 236. Effect of V = 2 v z resonance repeated the above orbit run, putting inr 

on axial motion during extraction. a s rna l l axial arnpIi tud e , that is, start
ing the particle slightly off the rne di an 

plane in order to see what happened to the axial motio n , In Figure 236 are the re
sults of this orbit run . The axial d i s plac e rne nt was recorded at intervals of once 
per sector and the s rnooth curve shown in this figure was obtained f r o m these points 
plotted as a function of the nurnbe r of turns. Also shown at the top of this figure is 
the corresponding radial arnpl itude which goes f r orn very s mal l values up to 54 
c e nti rne te r s . If one looks at the axial motion one can clearly see the f requency in
creasing. The axial frequency starts initially at 0.25 and increases to unity . When 
it reaches this value, the axial mot.ion finally goes haywire, as can also quite readily 
be seen. This is the result of the action of the coupling resonance v = 2 v and the 

r z 
fact that the radial arnpl i tude gets quite large. 

On the basis of the above results we decided that it was necessary to te r minate 
this be am deflection process at the 13th turn. As can be seen (Fig. 236), beyond 
this point the axial instability be corne s unbearable. Next we made a rno r e cornplete 
series of orbit runs to construct a set of phase plots f r o rn which the behavior of the 
be arn as a whole could be de te r miued , 

First, we have in Figure 237 the phase plots for the radial motio n, the fact that 
the radial arnpl.i tude gets quite large. These plots were constructed f'r o rn eight or
bit runs starting with initial conditions equally spaced around an invariant ellipse 
(eigen ellipse-) with a radial arnpl i tud.e of .0 . 5 CIn. This is the ellipse which is shown 
farthest to the left in the figure. The cornpute r stores the (r,Pr) values obtained on 
successive turns for all these orbits. It then calculates a large nurnbe r of points on 
a s mooth closed curve which will pass through the eight given points for each turn. 
The data for all these ellipses and distorted ellipses are then rearranged and plotted 
by the cornpute r in sixteen separate pictures. These p ictures are then pasted to
gether to fo r m the large, detailed figure shown. All this work is done entirely by 

Fig. 237. Motion of invariant ellipses in phase space during extraction (8 0). 
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the computer through an ingenious code for which we are indebted to our talented 
coder, Miss Thelma Arnett. 

We can see how the integral resonance field bump displaces the ellipse to the 
right initially at a uniform rate (Fig. 237). As the displacement grows, the nonlin
earity takes hold and the displacement rate increases, and as a result the ellipses 
become flattened and elongated (maintaining constant area). Here we have also 
shown some approximate indication of what one would expect for a septum and a 
channel. As a result of this work we have a fairly clear idea of the radial motion 
of the beam during the deflection process. 

The phase plots obtained for the axial motion are shown in Figure 238. As can 
be seen there are four very similar sets of these phase plots. The initial conditions 
for the corresponding radial motion were chosen to be the (r, Pr) values at the phase 
ellipse shown in the previous slide, which explains why we have four sets of axial 
phase plots here. For each set of axial phase plot runs we chose eight initial (z,pz) 
values equally spaced about an invariant ellipse with an amplitude of 5 c m , Thus, a 
total of 32 orbit runs were for this figure. The method of construction was the same 
as that described just above. 

Inspection of these phase plots shows several interesting results. Reading 
from left to right we have the phase plots for the thirteen successive turns during 
the deflection process. As c an be seen the shape of these plots changes drastically; 
this we can account for as an AG effect from the coupling resonance plus the ac
companying accelerated radial growth. The important result to note is the very 
good overlap of the four sets of phase plots. This implies that the coupling reso
nance, though quite active, will not appreciably disturb the optical quality of the 
beam during deflection (prOVided the beam is deflected at this point, that is, the 13th 
turn). This is a very encouraging result. We should also remark here that the 
feedback of the axial motion into the radial motion due to the coupling is not signifi
cant since the radial motion is completely dominated by the nonlinear. resonance. 

Fig. 238. Behavior of axial invariant ellipses in phase space during extraction. 
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These then are the results of our calculations testing this deflection scheme 
for the big cyclotron. The results are encouraging and similar investigations for 
medium energy machines should certainly be undertaken. 

The efficiency of a beam deflection system will, of course, depend on many 
factors. In this connection, one should consider the possibility of an ideal, "pro
grammed" machine, which has now, we feel, become feasible. In such a machine 
conditions near the ion source as well as the r-f voltage and waveform are suffi
ciently well controlled so that every beam pulse follows virtually the same path 
through the machine. Under these conditions one could expect to achieve nearly 
100% efficiency in beam extraction. 

In conclusion, I should like to express my gratitude to T. A. Welton for his 
very considerable help in this work. 

JUDD: You gave the simplified equation containing terms pertaining just to the 
nonlinear resonance. Essentially to couple the differential equations. In carrying 
out the analysis which you have described was this done with orbit codes which are 
essentially rigorous? As for high-order terms, were they done analytically with 
these approximate equations? 

GORDON: These are done with real orbit codes which treat analytical forms 
of the fields. 

JUDD: They were such large displacements that I would not think the approx
imate equation would do. 

GORDON: That is right. The approximate equation neglects high-order terms 
and predicts that the asymptote is straight whereas you can see in Figure 231 that 
the asymptote curves around. 

JUDD: That asymptote sort of started to turn around, which indicated that there 
are higher-order terms which tend to make it stable. 

GORDON: But, of course, this occurred at over 50 em, which was just too 
large to worry about. If stability sets in up there, it is too late for anything anyhow. 

BLOSSER: What was plotted in the last slide you showed? This was an axial 
phase plot of some sort. 

GORDON: What you are worried about is that the plots should, of course, sit 
one on top of the other, but they don't. I had originally intended that these four sets 
of phase plots would sit right under the radial phase plot of Figure 237, right under
neath it would be the axial phase plot pertaining to the same term. Unfortunately, 
it would not go on one slide, but we have it on two slides; so the horizontal spacing 
between the plots is just an indication of what the radial growth is, you see. But 
each one of these is centered at z '" 0, p '" 0, and displacement has no significancez 
as far as axial motion is concerned. 
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