GENERAL DESIGN FEATURES OF THE WARSAW UNIVERSITY 200 cm ISOCHRONOUS HEAVY ION CYCLOTRON

S. Chojnacki Joint Institute of Nuclear Research, Dubna Institute of Experimental Physics, Warsaw University Institute of Nuclear Research, Swierk

Design of an AVF heavy ion cyclotron was started in the Institute of Experimental Physics of the University of Warsaw in 1971. The general idea was to make a modernized copy of the 200 cm AVF cyclotron operating since 1968 in the Laboratory of Nuclear Reactions at Dubna. The project is a result of cooperation of the University of Warsaw with the Laboratory of Nuclear Reactions at Dubna and the Institute of Nuclear Research at Swierk.

The main characteristics of this cyclo-tron are:

- a) a broad interval of accelerated ions with the mass to charge ratio 2 ${\leq}A/z$ ${<}5,$
- b) relatively high maximum energy given by the relation E = $178 (z/A)^2$ MeV/nucleon,
- c) variable energy in the range to about 50 % below the maximum energy.

As a basis of this cyclotron, a commercial magnet SP-72L of conventional H-type construction is used. Its main parameters are listed in Table 1. Four straight 42 deg. sectors are used to produce the azimutal variation of the magnetic field. The isochronous average field pattern in the range from 1.6 to 2.14T is obtained by sector shaping, circular iron shims and 8 pairs of circular trimming coils. Because of the high saturation effect, the shape of sectors and shims is determined by field measurements and semi-empirical considerations. At present the measurements are done and shaping will be finished this year.

The accelerating system consists of two 45 deg. dees excited on the 2-nd or 3-rd harmonic by two panel resonators to an amplitude of 75 kV. The RF generators supply up to 150 kW in the frequency range of 9 -27 MHz.

The vacuum system consists of four oil diffusion pumps with liquid nitrogen traps. The total pumping speed is 2×10^{4} l/s and should give a pressure of $2 - 3 \times 10^{6}$ mm Hg in operating conditions.

Two types of internal ion source will be used:

- 1) arc ion source with directly heated cathode for light ion production (H_2, D_2^+, He_4^+) ,
- 2) indirectly heated cathode and high power arc for heavy ions (from C_{12} to Ar_{40}).

Proc. 7th Int. Conf. on Cyclotrons and their Applications (Birkhäuser, Basel, 1975), p. 107

The beam extraction system will be of two types depending on ion type (Table 2): thin foil stripper (aluminium or carbon foils) or electrostatic deflector. Both systems include proper magnetic channels.

The beam handling system assures five beam lines, one of which will be equipped with a monochromising system giving an energy definition better than 10^{-5} .

Table 1: Design data of the Warsaw Univer-

MAGNET

HAGNET		
Pole tip diameter Beam radius, max. Gap-hills valleys avf sectors Main coils current circular trimming coils Weight Power in main coils	200 cm 90 cm 4.1 - 2.6 cm 15 cm 4,42 deg., straight 1300A max, stabil.10 8 pairs 211 tons 325 kW	
<u>rf system</u>		
2 panel resonators 2 dees, width 45 deg. Main operating modes - 2-nd harmonic, 3-rd harmonic n-shift		
RF range RF power Dee voltage	14 - 25 MHz 150 kW 75 kV	
Table 2: Some particle beams of the Warsaw University cyclotron:		
Particle: Energy MeV/n	uclear: Extraction:	
H ⁺ ₂ 28	stripping	

141010101	Enter EJ not / nate out t	
H_{2}^{+} H_{2	28 $7 - 11$ $12 - 19$ $7 - 11$ $11 - 19$ $9 - 23$ $7 - 11$ $11 - 17$ $7 - 11$ $11 - 17$ $7 - 11$ $6 - 9$ $5 - 7$ $6 - 8$ $5 - 7$	stripping stripping electrostatic stripping electrostatic electrostatic stripping electrostatic stripping stripping electrostatic electrostatic electrostatic