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Abstract

For the design of "flared" sectors in
medium and high energy separated sectored
cyclotrons, hard edge expressions obtained
by the following two methods can bhe used to
calculate the betatron oscillation frequen-
cies directly from the sector drawings 1)ex-—
pressions obtained using a hard edge Fourier
analysis approach, 2)expressions obtained by
the method of multiplication of matrices. A
comparison is made of the two sets of expre-
gsions.

1. Introduction

For designing the sectors of a medium
or high energy separated sectored cyclotron,
it is convenient to have hard edge express-
ions which will relate the betatron frequen-
cies v, and v, and the time period T direc-
tly to the sector drawings. To obtain these
expressions two alternative methods may be
used: 1)a "hard edge" Fourier analysis appr-
oach, described earliert,2 ?nd 2)the "matr-
ix multiplication" approach3/), These are
summarized below:

1.1 Hardedge Fourier Analysis Approach

To obtain the hardedge expressions for
the betatron frequencies when 1)the sector
entry and exlt spiral angles g, and ¢, are
unequal, and 2)the hill angle 7%,,the hill
field BH and valley field BV are all functi-
ons of the radius, we may begin with the an-
alytical expressions for the betatron frequ-
encies
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derived by Smith & Garren4), Verster and
Hagedoorn®/). We reduce these expressions to
the equivalent hardedge set,

In the hardedge approximation, the av-
erage field Bo over the circle of radius R
is

N
Bo = Eﬁ[Bﬁvo + BVio) (3)

where N=number of sectors, and Eothe valley
angle.

When mor%o0, BH and By are all functions
of the radius, the total field index WT is
obtained by differentiating Eq.(3) in all
the functions.
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where Rq = ﬂo[1 + 2WBV/noN(BH - BVH
and we have made use of the relation
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Nuis the hill field index  £38Bw and ny
the valley field index £33 B,k
for flat sectors ng = ny = O,

The radial derivatives of the Fourier
coefficients a} and bj required in Eq.? can
also be obtained directly from the sector
drawings. With reference to Fig.1, we Fou-
rier analyse a step wave in the interval
0¢6 <27 by dividing the interval into re-
gions a1, ap, az, ay, a5 and ag (though the
cage of N=3 sec%ors ig shown in Pig.,1, the
results can be generalized to any N). Since
the nth Fourier co-efficients are given by

2T PA (4
Pr= | B(8)Cosneae, an=1 fB(e)Sinnede (6)
o -}
we get, evaluating the integrals,
1 . .
Pn(fb)=;;£ [(Bv—BH)(Sln nagq + Sin ngz +
Sin nag) + (BE-BY) (Sin ngy+Sin ngy+Sin nag)
(7)
At radius Po + APy, due to the spirall-
ing, the entry and exit sector edges will be
displaced by 894 and ASp respectively shown
by the dotted step wave in Fig.1. Changing
the intervals aq-—saq + 894 etc. and again
evaluating the integrals
Pn(Po+ &) = %?; {(BV—BH) [sin n(a1+ 861)+
.+J + (BE-BY) [Sin n(ay+ a85)+ ]} (8)

Thus putting az=a1+2w /N etc., and taking
limits

pn(Po+APo)—pn(fo)%(BH-BV)[Aez Cos n(po +
n0) = 48, Cos np o] (9)

where o may be any arbitrary angle between
O and a4 and 7%, the hill angle. Since

t = Fn dpn as
and tan = L
an Bo _dPo 8 fo dFO

taking limits in Eq.9
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a) = E%l[tan €, Cos n(Po+no)-tan €1Cos nﬁd

.. (10)

where f1 = (By-By)/Bp, Similarly,

.

b [san e, Sin n(ormp)-tan €1 Sin npe]

From Eq.10 and 11 for n=N,
N2f£42

aﬁ2+bﬁ2=—1:——[tanl&1+tan1&,2—2 Cos Npp.tang,.

it
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If we include the effect of the higher har-

monics n=2N, 3N etc. then Fourier analysing
as before and taking limits we get, simply

i a:l2+b12 2
NN N, n2 - b4 [S1 tan” & 1+Sz tan EZ P
(13)

o0 o
where St = S, = > 1/K° and Sz =z1}5 CosNK7,

2S5 tan €1 tan €2]

The expregssion for the Flutter can be obta-
ined in a similar manner.
ag before, from (7) etc.
2 2.2 2

FTo= %5 al+b) = %%1— (81-83) (14)
Substituting from (4), (13) and (14) in Eq.

(1), the general hard-edge expression for vy
becomes £

N7
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+ F2[1+ (s1tan’ € ;+Sptan” € ,-2S3tan € 1.

tan £2) (51-53)7"] (15)

We note that Eq.15 is exactly equivalent to
Eq.1., It will be wvalid in so far as Eq.1 is
valid. Eg.! is found to give sufficiently
reasonable agreement with orbit integration
results. Thus Eq.15 will also be sufficie-
ntly accurate for initial design work. It
is a general hard edge expression for v, in
the following sense 1)the entry and exi% sp-
iral angles €, and €, may be unequal, ii)the
hill and valley magngts may have a field in-
dex ng and ny. For flat sectors ni=ny=0,
iii)Eq.15 is valid both for conventional si-
ngle magnet cyclotrons and for separated se-
ctored cyclotrons, In the latter case, By
is simply zero.

It is interesting to note that when
E1=8= €, Eq.(15) reduces to the well known
expression V2 = —F'+F2(1+2tan2€ )

From Eqs.(2) and (4), the correspondi-
ng hard edge expression for wv,., for arbit-
rary sector shapes, becomes

Fourier analysing

2

pZ = 1+(tan € y-tan 81)/R4+—Bﬂ-’lﬂm

2 Bo2 1
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1,2 Expressions by the multiplication of
matrices

For flat, homogeneous field, separated
sectored cyclotrons, it is also possible to
derive expressions for the betatron freque-
ncies by the method of multiplication of ma-
trices of field free sections and homogene-
ous field bending magnets. Then

Cos( vr,z QTZ/N> = %Tr(prMmr’Z)
where Mf is the matrix of the field free
sector, and MNpmy, 2z the matrix of the magnet
sector for r ard z motion respectively.

3)

This has been done by G. Schatz and

the result is
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where

and « and 8 in his notation correspond to
the hill angle 7o =2nd radius Po in the pr-
esent notation.

2. Comparison of the "Fourier'"and "matrix"
methods.

We now compare the two sets of hard
edge expressions. Egs.15 and 16, obtained
by the Fourier method, and Eqs.17 and 18 ob-
tained by the matrix multiplication method
by applying them on the same sector shapes.
Table 1 and Fig.2 show the sector parameters
of an E = 1/%3 me2, ¥ = 8, flat field, sepa-
rated sectored electron cyclotron magnet.

The betatron frequencies obtained using
the Fourier expressions Egq.15 and 16 and the
matrix expressions 17 and 18 for the param-
eters of Table 1 are compared in Figs.3 and
4.

We note that the "Fourier" method gives
values of the betatron frequencies lower th-
an the "matrix" method.
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Table 1 - Hardedge sector parameters
for an N=8, gseparated sectored elec-
tron cyclotron magnet

5 Mo €, €,
cms el® ees?® ves®
5.0 9,90 32,42 34,88
7.0 11,393 35,62 40,53
2,00 13,32 40,14 48,71
11.0 17,98 46,68 60,156

3. Soft _Edge Expression for vg

Due to fringing field effects, a real
cyclotron field will never be a "sharp hard-
edze" but will be a "soft edge" field. A
Fourier analysis of a "soft edge" field will
give a relatively smaller amplitude of the
nigher harmonics than the corresponding hard
edze. This is illustrated in Table 2 fora
sector magnet with very large fringing fields.

Table 2 - Comparison of the successgive
harmonic amplitudes Cn2={pn2+qn2)1/2 for
the measured "soft edze" and equivalent
hard edge fields for an N=8, sector mag-
net with larze fringing fields.

K n Cn Cn'
harmonic hard-edge soft-edge
Gauss Jauss
1 8 21,90 84.79
2 15 50454 15.83
3 24 14,18 2,62
4 32 12.35 3.56

Thus the hard edge Eq.15 is expected to ov-
erestimate the values of v, .

We note from Table 2 that the amplitude
of the higher harmonics fall off rapidly co-
moared to the fundamental. The effect of a
nigher harmonic already falls off as 1/XK2 in
%3415, Thus the net contribution of a high-~
er harmonic falls off much faster than 1/X2.

It is sufficient to truncate the series
in Eq.15 at a low value of X=2 or 3 consis-
tent with the soft edge field. ZEg.15 then
becomes the relatively more accurate "soft
edge" expression for Y, .

A relative comparison of the hard edge
Z9.15 (with K=) and the soft edge Eq.15
(with K=2 and K=3) using the sector parame-
ters?/ of an =%, E=1/2 mc?2 electron cyclo-
tron magnet is made in Fig.5. The experim-
ental values of VY, obtained by orbit integ-
ration in the measured field are also shown
in the figure. As expected, because of the
reasons mentioned earlier, K= o gives val-
ues of w_ higher than the orbit integration

z
results.

266

3.1 Flexibility of the Fourier Method

We can thus summarize the flexibility
of the Fourier method of Sec,1.1 in deriving
the expressions for the betatron frequencies-

i) The equations are valid when the
entry and exit spiral angles may
be unequal.

ii) The same expressions apply to con-

ventional one magnet cyclotrons and
separated sectored cyclotrons. The
latter are a special case with By=0.

For flat sectors My=Ty=0, However,
a field index in the bending magnets
can be introduced through these te-
rms.

iii)

iv) By truncating the series at a low
value of K, the "hard edge" expre-
ssion {Eq.15) reduces to the corr-
espondingly more accurate "soft

edgze" expression.

4, Optimum Sector Shapes

When optimizing the sector shapes for
a separated sectored cyclotron, it is requ-
ired that the shapes be such that for some
"reference ion", the time period be constant
with the radius and simultaneously a presc-
ribed tune be generated on the Vp Vgz graphs
If this is done, then eliminating €1 and €5
from Eqs.(5) and (15), the optimum contours
for a separayed sectored cyclotron are given
by simply',2J,

1/2
1 2 2R2 1
81(PO): EFO- [R1‘ 3 S'] — 03)] dPO - ..2.170(&)
(19)
82(Po) = B81(Py) + No( Py) (20)
d 1 /BH\* N7, B
where Ri=fo 332, Rs=—x(g)", w318 g2

R2=[S1R3R12+F2—K1n3-%i - vze(Poﬂ

Mo and Q¥9 are the prescribed sector angle
and sec%og flaring required for isochronism
and Vz(Po) the required radial variation

of Yz, The latter can be easily obtained
from the tune to be generated1y In prac-
tice, 49, may be calculated at a few radii

dPo

in Eq.(19), fitted to a polynominal in rad-
ius, and integrated.

References

1) A, Jain and A.S. Divatia, IEEE Trans.
Nucl.Se. NS-20, No.3 (1973) p.902

2) A. Jain and A.S. Divatia, BARC Report
760, 1974

%) G. Schatz, Nucl.Instr. and Meth. 72
(1969) 29,

4) L. Smith and A.A. Garren, UCRL-8598(1959)

5) H.L. Hagedoorn and N.P.Verster, Yucl.
Instr. and Meth. 18, 19 (1962; 201.



Proceedings of the 7th International Conference on Cyclotrons and their Applications, Ziirich, Switzerland

ned by using 1) the hard
edge Fourier and 1i) the
matrix expressions for
the same sector shapes, of
Fig.2.

ned by using 1) the hard
edge Fourier and ii) the
matrix expressions for
the same sector shapes,
of Fig.2.
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Fig.1 Step wave approximation for B(®)
Fig.2 Sector shapes of an
N=8, E=1/3 mc2, separa-
ted gectored electron
cyclotron magnet.
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Fig.3 Comparison of &z obtai- Fig.4 Comparison of Vs obtai- Fig.5 Comparison of soft

edge Eq.(15) (with
K=2,3) and hard ed-
ge Eq.(15)(K=o00 )
with orbdit integra-
tion results in the
measured field of
an N=3 magnet.
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