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Abstract 

For the design of "flared" sectors in 
medilli~ and high energy separated sectored 
cyclotrons, hard edge expressions obtained 
by the following two methods can be used to 
calculate the betatron oscillation frequen
cies directly from the sector drawings 1)ex
pressions obtained using a hard edge Fourier 
analysis approach, 2)expressions obtained by 
the method of multiplication of matrices. A 
comparison is made of the two sets of expre
ssions. 

1. Introduction 

For designing the sectors of a medium 
or high energy separated sectored cyclotron, 
it is convenient to have hard edge express
ions which will relate the betatron frequen
cies Vz. and 1.1 ... and the time period 1: direc
tly to the sector drawings. To obtain these 
expressions two alternative methods may be 
used: 1)a "hard edge" Fourier analysis appr
oach, described earlier1,2) ~d 2)the "matr
ix multiplication" approach3 ). These are 
summarized below: 

1.1 Hardedge Fourier Analysis Approach 

To obtain the hardedge expressions for 
the betatron frequencies when 1) the sector 
entry and exit spiral angles £, and f. .. are 
unequal, and 2)the hill 8..'1gle "7o,the hill 
field BH and valley field BV are all functi
ons of the radius, we may begin with the an
alytical expressions for the betatron frequ-
encies 

2 2 L
oG , 2+b , 2 

V = -~+F + ann + 
z r I n2 

(1) 

(2) 

derived by Smith & Garren4 ), Verster and 
tlabedoorn5). We reduce these expressions to 
the equivalent hardedge set. 

In the hardedge approximation, the av
erage field no over the circle of radius ~ 
is 

where N=number of sectors, and 
angle. 

~ 0 the valley 

When 'IJ 0' to, BH and BV are all functions 
of the radius, the total field index ~'T is 
obtained by differentiating Eq.(3) in all 
the functions. 

LL'T _Po dBo = (tan t.2 - tan c: 1 ) /R4 + r- To dpo ~ 

N~oBHnH + ~(1~)Bvnv (4) 
2 x Bo Bo 2 Tr Bo 

where R4 = "1 0 [1 + 2nBv/1')oN(BH - BV)] 
and we have made use of the relation 

g;~ - ~o (tan c2 - tan E1) = 0 (5) 

n H is the hill field index &B ... and nv 
the valley field index ~3g; 13H~P., 
for flat sectors nH = ny ~·O. 

The radial derivatives of the Fourier 
coefficients an and bh required in Eq.1 can 
also be obtained directly from the sector 
drawings. With reference to Fig.i, we Fou
rier analyse a step wave in the interval 
J < e <:211" by dividing the interval into re
gions a1, a2, a3, 84, a5 and 3.6 (though the 
case of N=3 sectors is shown in Fig.1, the 
results can be generalized to any N). Since 
the nth Fourier co-efficients are given by 

1 12.Tr 1. IT 

Pn- T( B(8)Cosn8d8, qn==~ 1 B(e)Sinnede (6) 
o 0 

we get, evaluating the integrals, 

pn(Po)=~n [ (BV-BH) (Sin na1 + Sin na3 + 

Sin na5) + (BH-BV) (Sin na2+Sin na4+Sin na6~ 
(7) 

At radius Po + ~Po, due to the spirall
ing, the entry and exit sector edges will be 
displaced by 681 and 682 respectively shown 
by the dotted step wave in Fig.1. Changing 
the intervals a1 -a1 + 681 etc. and again 
evaluating the integrals 

Pn(po+6fo) = ~n {(BY-BH) [Sin n(a1+ .681)+ 

•• ~ + (BH-Bv) (Sin n(a2+ (92)+ •• J} (8) 

Thus putting a3=a1+2lt IN etc., and taking 
limits 

m( fo+APo)-Pn ( fo)==~ (BH-BV)[ A92 Cos n(~o + 

lJo) - !le, Cos n~o] (9) 

where ~o may be any arbitrary angle between 
o and a1 and 'tJo the hill angle. Since 

a' = .& dPn d9 -n and tan e =f'o -Bo dpo dPo 

taking limits in Eq.9 
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~ = N!1 [tan E 2 Cos n(f!>o+>]o)-tan E.1Cos npo] 
•• (10) 

Sin n~ ] 
• C?11 ) 

From Eq.10 and 11 for n=N, 

2 2 N2f12 [1. 1. 
aN +bN = It 1. tan t 1 +tan C 2-2 

.tan£'2] (12 ) 

If we include the effect of the higher har
monics n=2N, 3N etc. then Fourier analysing 
as before and taking limits we get, simply 

~ ~ 2 
+ b~ 2 

f 2 2 2 L -=--=- = *[S1 tan €.. 1+S2 tan E. 2 -
l'l:N,>N.. n 2 

2S3 tan c1 tan E2] (13) 
00 ,2 "'1 

where S1 = S2 = ~1/K and S3 =~? CosNK"!,, 

The expression for the Flutter can be obta
ined in a similar manner. Fourier analysing 
as before, from (7) etc. 

F2 = ~ "a;+b2 = 1f12 (S1-S3) (14) 
L n n:l. 

Substituting from (4), (13) and (14) in Eq. 
(1), the general hard-edge expression for v 
becomes Z 

uz2= -(tanE 2-tan E1)/R4 BHN~ohH_~_ ~\~vnv 
B02R ~ 2 T[ /130 

+ F2 [1+{S1tan2 E 

.tan E 2) (S1-S3)-1] 

') 

1 +S2tan~ E. 2-2S3tan C 1. 

(15 ) 

We note that Eq.15 is exactly equivalent to 
Eq.1. It will be valid in so far as Eq.1 is 
valid. Eq.1 is found to give sufficiently 
reasonable agreement with orbit integration 
results. Thus Eq.15 will also be sufficie
ntly accurate for initial design work. It 
is a general hard edge expression for V in 
the following sense 1)the entry and exi~ sp
ir~l angles E1 and E? may be unequal, ii)the 
hill and valley magn~ts may have a field in
dex nH and nv. For flat sectors nH=nv=O, 
iii)Eq.15 is valid both for conventional si
ngle magnet cyclotrons and for separated se
ctored cyclotrons. In the latter case, Bv 
is simply zero. 

It is interesting to note that when 
E1=~~ E, Eq.(15) reduces to the well known 
expression l)z2 = -f' +F2 (1 +2tan2 e. ) 

From Eqs.(2) and (4), the correspondi
ng hard edge expression for v y , for arbit
rary sector shapes, becomes 

1+(tan E. 2-tan t1 )/R41~~~1f rtH 

+ §z: (1-N'lo) n 
Bo 211: V 

(16 ) 

1.2 Expressions by the multiplication of 
matrl~ 

For flat, homogeneous field, separated 
sectored cyclotrons, it is also possible to 
derive expressions for the betatron freque
ncies by the method of multiplication of ma
trices of field free sections and homogene
ous field bending magnets. Then 

Cos( lJr,z 2 rr/N) = ~Tr(Mf,Mrnr'z) 
where Mf is the matrix of the field free 
sector, and Mmr, z the matrix of the magnet 
sector for rand z motion respectively. 

This has been done by G. SChatz 3 ) ~~d 
the result is 

Cos(2 it l.Jz/N) =1 I RN [tan Y1-tan Y] +Sin 2L. 2 N 

( Tt 0.)[ -=!rc . Sin N - 2" . tan Y2-tan Y1- 1rtan Y1 tan Yd· 

. Sin oe-1 
~ (17) 

Cos(2 l)r/N)=~{cos(2: - Y1)' Cos y~l-
[2Sin ~ .Sin(; - ~ ).0+t~ Y1 tan Y2 ) 

( / ) 0(. ( -Y2)-~ .Sin 2n N- Y1- y? . Si~ . Cos Y1- J 

+00s(2; + Y2 ) Cos y;1} (18) 

where 
Y1 

and r;(, and s in his notation correspond to 
the hill angle ~o and radius Po in-the pr
esent notation. 

2. Comparison of the "Fourier"and "matrix" 
methods. 

We now compare the two sets of hard 
edge expressions. Eqs.15 and 16, obtained 
by the Fourier method, and Eqs.17 and 18 ob
tained by the matrix multiplication method 
by applying them on the same sector shapes. 
Table 1 and Fig.2 show the sector parameters 
of an E = 1/3 mc 2 , N = 8, flat field, sepa
rated sectored electron cyclotron magnet. 

The betatron frequencies obtained using 
the Fourier expressions Eq.15 and 16 and the 
matrix expressions 17 and 18 for the param
eters of Table 1 are compared in Figs.3 and 
4. 

We note that the "Fourier" method gives 
values of the betatron frequencies lower th
an the "matrix" method. 
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Table 1 - Hardedge sector parameters 
for an N=8, separated sectored e1ec
tro~ cyclotron magnet 

fo ~" E, E..;a. 
cms 0 0 0 

5.0 9.90 32.42 34.88 
7.0 11.39 35.62 4J.53 
9.00 13.'32 40.14 48.71 

11.J 17.98 46.68 60.16 

3. Soft Edge EX.2ression for 11..L 

Due to fringing field effects, a real 
cycl::>tron field will never be a "sharp hard
erl,se" but \'1ill be a "soft edge" field. A 
Fourier analysis of 3. "soft eige" field will 
give a relatively smaller a~plitude of the 
"l::' g).1er h2.rmonic s than the co:::'re s ponding hard 
edse. 1'hi3 is illustrated in Table 2 for a 
sector magnet with very 13.Tge fringing fields. 

Table 2 - Gomparison of the successive 
harmonic a~plitudes Cn2=(Pn2~qn2)1/2 for 
the measured "soft edge" an:i equivalent 
hard edge fields for an N=8, sector mag
net '.'lith larise fringing fielils. 

K n On en r 

1 
2 
3 
4 

harmo~ic haril-edge soft-edge 

8 
15 
24 
32 

Gauss 3-auss 

81.90 
50.54 
14.18 
12.35 

84.79 
15.83 
2.62 
3.56 

Thus the hard edge Eq.15 i3 expected to ov
erestimate the values of l}z.. 

"'Ie note fro11 Table 2 that the amplitude 
of t'le 'ligher ha.rmonics falloff rapidly co
moared to the fundamental. The effect of a 
higher harmJ'1ic already falls off as 1/K2 in 
~q.15. Thus the net contribution of a high
er harmonic falls off much faster than 1 /K2. 

It is sufficient to truncate the series 
in Eq.15 at a 10.'1 value of K=2 or 3 consis
tent with the soft edge field. Eq.15 then 
becomes the relatively more accurate "soft 
edge" expression for Vz.. 

A relative comparison of the hard edge 
:8q.15 (with K= cO) and the soft edge Eq.15 
(with K=2 and K=3) using the sector parame
ters2 ) of an ~T=3, E=1/2 mc 2 electron cyclo
tron r:Jagnet is made in Fig.5. The experim
ental v3.1ues of 11z. obtained by orbit integ
ration in tl:1.e r:Je'1.su.red field are also shown 
in the figure. As expected, because of the 
reasons mentioned earlier, K= ~ gives val
ues of Vz. higher than the orbit integration 
results. 

3.1 Flexibility of the Fourier Method 

We can thus summarize the flexibility 
of the Fourier method of Sec.1.1 in deriving 
the expressions for the betatron frequencies~ 

i) The equations are valid when the 
entry and exit spiral angles may 
be unequal. 

ii) The same expressions apply to con
ventional one magnet cyclotrons and 
separated sectored cyclotrons. The 
latter are a special case with Bv=O. 

iii) For flat sectors ~H=nv=O. However, 
a field index in the bending magnets 
ca~ be introduced through these te
rms. 

iV) By truncating the series at a low 
value of K, the "hard edge" expre
ssion (Eq.15) reduces to the Corr
espondiTI!zly more accurate "soft 
edge" expression. 

4. Optimlli~ Sector Shapes 

\Vhen o;Jtimizing the sector shapes for 
a se~arated sectored CYClotron, it is requ
ired that tl:1.e shapes be such that for some 
"reference ion", the time period be constant 
with the radius and simultaneously a prese
ri bed tune be generated on the ))r l}z graph. 
If this is done, then eliminating t1 and E..2 
from Eqs.(5) and (15), the optimum contours 
for a separa~ed sectored cyclotron are given 
by simp1y1,2J. 

J 1 [ 2 2R2 1 1/2 
81(Po)= 2Po R1- R3 (S1 - 83)J dPo 

1 
- "2 '7 o (Pol 

(19 ) 

92( Po) = 81 (po) + ?Joe po) (20) 

£.:1Q 1 (llli )2 ~ llli where R1=fo dpo' R3- ~).Bo ' K1 2TC Bo 

R2=[S1R3R12+F2-K1nH~ - lIz
2 (po)] 

~o and d,o are the prescribed sector angle 
and sec~b~ flaring required for isochronism 
and lIz(?o) the required radial variation 
of l> z. The latter can be easily obtained 
from the tune to be generated1 ,Z). In prac
tice, de. may be calculated at a few radii 

dPo 
in Eq.(19), fitted to a polynominal in rad
ius, and integrated. 
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Fig.3 Comparison of Vz obtai
ned by using 1) the hard 
edge Fourier and ii) the 
matrix expressions for 
the same sector shapes, of 
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Sector shapes of an 
N=8, E=1/3 mc 2 , separa
ted sectored electron 
cyclotron magnet. 
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Fig.4 Comparison of V,. obtai- Fig.5 
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Comparison of soft 
edge Eq.(15) (with 
K=2,3) and hard ed
ge Eq. ( 1 5 )( K= 00 ) 
with orbit integra
tion results in the 
measured field of 
an N=3 magnet. 

the same sector shapes, 
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