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Abstract 

An analysis is made of the extra focusing that 
can be obtained by suitably shaping the dee gap, in 
addition to the usual 'phase change', 'velocity gain' 
and strong focusing effects. To obtain this extra 
focusing the electric equipotentials must be curved 
in the median plane; the extra focusing power is shown 
to be proportional to the integral f(d 2 y/dx2 )dV 
across the gap of the second derivative of the equi
potential curves y(x,V) in the median plane. There 
is also a complementary relationship between the 
radial and vertical focal powers of the dee gap; 
thei r sum is shown to be proportional to the rate of 
change of energy gain with phase, provided space 
charge and transit time effects can be neglected. 
The appl ication of these theorems to central region 
design is illustrated by a number of examples. 

1. Introduction 

The electrical focusing properties of dee gaps 
whose shape is uniform along the gap have been de
scribed in classic studies by Rose and others. l Near 
the pointat which ions are injected into a cyclotron, 
however, the dee shape is generally quite non-uniform 
and strong additional focusing effects can arise as
sociuted with curvature of the median plane equipo
tentials. These effects must be properly taken into 
account if accurate estimates of the phase acceptance 
and beam behaviour near the centre are tobe obtained. 
In this paper we begin by considering the inter
relation between the focal properties and the energy 
gain at the dee gap, and their dependence on the gap 
shape and the RF phase. By suitably shaping the 
field with a non-uniform dee gap (as in Fig. 1) it 
is shown how a useful change in v~ can be obtained 
in a region where the vertical focusing is generally 
weak, and how this is accompanied by an opposing 
change in v~ which is equal and opposite for the 
phase of maximum energy gain. Finally, a simple ex
pression is derived for estimating the magnitude of 
these changes in focusing directly from the curva
ture of the median plane equipotentials. This method 
has proved very helpful in selecting possible elec
trode shapes for the TRIUMF central region, and is 
illustrated by examples taken from these studies. 

2. Dee Gap Focusing-Energy Gain Relationship 

The electric field strength in the dee gap may 
be written E coswt where w represents the RF angular 

'velocity gain' effects,l y and t are related by 

wt = ¢ + wy/v = ¢ + hy/R (2) 

where ¢ is the RF phase when the ion is at y=O, R 
is the equi 1 ibrium orbit radius for an ion of 
velocity v, and h is the acceleration harmonic (h=5 
for TRIUMF). Thus for the vertical focal length fz 
we have, making a first-order Taylor expansion of 
Ez and changing to y as the independent variable 

--.L = - -q- J+= ~ cos (!2:L + ¢) dy. (3z) 
fz mv 2 

-00 dZ R 

A simi lar equation (3x) holds for l/fx, with z 
everywhere replaced by x. I n the absence of space 
charge div E = 0, so that we find 

1 -+ 
fx fz 

-q
mv 2 ([E y cos(h: + ¢)l: 

+ ~ i~Ey sin(~ + ¢) dY) 

where we have integrated by parts. Now Ey+O as y+±oo 
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frequency. An ion of charge q crossing the gap will 0.99 
experience a momentum change 

EP = q l~E(X'y,Z) coswt dt (1) 

where the origin will be assumed to lie on the dee 
gap centre line, x being measured outward along it, 
y normal to it and Z vertical. Now, neglecting 

Fig. 1. Median plane equipotentials shaped for 
improved focusing on the first turn 
(r ~ 12 in.) in TRIUMF. 
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and therefore 

fx 
+ = __ h_~ (t.T) (4) 
f; 2RTc d¢ 

--the sum of the x- and z-focal powers should be 
proportional to the rate of change with phase of t.T, 
the energy gained by the ion at the gap, 

t.T = q L~Ey cos[~ + ¢) dy. (5) 

The velocity v is assumed constant across the gap in 
the derivation, but for practical purposes we iden
tify ~mv2 with Tc ' the ion energy at the gap centre. 
Relation (4) can be made dimensionless by writing 
the focal powers in terms of their contributions 
t.v 2=R/nf to thei r respective betatron oscillation 
frequencies (for f»R). Thus 

t.v2 + tov2 = - _h_ ~ (t.T). 
r z 2nTc d¢ 

(6) 

Eq.(4) is clearly a general ized form of the 
famil iar f~l+f~l=O applying to non-accelerating 
electric and magnetic lenses. This exactly comple
mentary relation also appl ies to our dee gap lenses 
for the prime phase ¢m for which the energy gain is 
a maximum: the vertical and horizontal focal powers 
are there equal and opposite. Thus additional ver
tical focus ing t.v~ can be obtained, at the expense of 
allowing v~ to be reduced by the same amount. This 
can be advantageous, as was found for TRIUMF,2 where 
a lower vr helps to reduce the effects of radial 
longitudinal coupling due to the vr=l resonance. 

3. Dependence on Phase and Dee Gap Asymmetry 

The sinusoidal dependence of the focal power 
l/fz on phase and the effec t of the y-symme try of the 
gap may be brought out by writing (3z) in the form 

- Fi sin¢ - F~ cos¢. 

(7z) 

(8z) 

Here ¢z is defined as the transition phase between 
vertical defocusing (¢<¢z) and focusing (¢>¢z). The 
'symmetric' and 'asymmetric' focal powers are given 
exp 1 i cit 1 y by 

S 
A cos _q_ 

Fz = Fz sin ¢z = mv2 J 
00 ~ sin [hY] d . 

dZ cos R Y 
_00 

The appropriateness of this terminology can be 
seen by considering a dee gap symmetric about the 
plane y=OA in this case Ez is an odd function of y 
so that Fz=O, ¢z=O and l/fz=F~ sin¢. 

The phase dependence of l/fx may be treated in 
the same way. Thus we are led to introduce quanti
ties Fx , h, F~ and F~ defined in new equations (?x), 
(8x) and (9x) exactly analogous to Eg.(7z), etc. 
above. For a y-symmetric dee gap, F~=O, ¢x=O and 
l/fx=F~ sin¢. 

For the energy gain we may write (5) as 

t.T - t.Tm cos(¢-¢m) 

- t.T~ cos¢ + t.T~ sin¢ 

(10) 

(11) 

S A where this equation defines t.Tm, t.Tm and t.Tm. For a 
y-symmetric gap, t.T~=O, ¢m=O and t.T=t.T~ cos¢. 

Substituting (7) and (10) in the energy gain
focusing relation (4) and el iminating ¢, we find 

F ei¢x+Fei¢Z _h_t.Tei¢m (12) 
x z 2RTc m 

i.e. the focal powers l/fx and l/fz can be repre
sented in an Argand diagram as vectors whose sum 
represents a certain fraction of the t.T vector. In 
general, therefore, if ¢z is more negative than the 
phase of maximum energy gain, ¢x will be more 
positive, and vice-versa: 

( 13) 

In the special case of a uniform (parallel) dee 
gap, the case which Rose treats, the radial focal 
power l/fx=O, and therefore by (12) ¢z=¢m. Also, 
sub s tit uti ng fo r F z from (1 2) into (7z), we fin d 

ht.Tm 
-- sin(¢-'" ) 2RT c 'l'm 

(14) 

which is just Rose's formula for the 'phase change' 
focusing term (he takes ¢m as his zero phase). Now, 
as Rose has pointed out, if there is uniformity 
along the dee gap, the degree of asymmetry across 
the gap cannot influence its effective focal power 
because ¢Z=¢m, i.e. the vertical transition phase 
is always the same as the prime phase of maximum 
energy gain (in the approximation that velocity 
gain effects may be neglected). For a non-uniform 
dee gap the same is true (¢Z=Oo=¢m) if the gap is 
symmetric across y=O. To obtain improved vertical 
focusing around the prime phase ¢m, the gap must be 
both non-uniform and asymmetric, giving curved 
asymmetric equipotentials in the median plane 
(Fig. 1) as well as in the vertical plane (Fig. 2). 

Han and Reiser's results 3 on the focal proper
ties of non-uniform dee gaps have been used to check 
the val idity of some of the above relations. They 
tracked ion paths by numerical integration through 
dee gaps of various designs for many energies and 
phases, parametrizing their results in terms of lens 
parameters. Figs. 3 and 4 show two examples of 
their data (the points) for the variation of focal 
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Fig. 2. Equipotentials in a vertical plane 
across an asymmetric dee gap. 
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power and a6T/a. with phase for Tc=0.2 MeV~6Tm' In 
Fig. 3 the gap is symmetric with a pair of vertical 
grid posts on either side (see inset). leaving a beam 
aperture 1.0 in. wide x 3.0 in. high. In Fig. 4 the 
gap is asymmetric with posts on only one side. These 
two cases have been chosen not so much to show the 
excellence of fit, which is much better for larger 
values of Tc/6Tm' but to illustrate how well the 
relations ~old up for Tc/6Tm~1, where velocity gain 
and strong focusing effects would be expected to be 
quite important. 

In both the figures there is a nearly sine-l ike 
variation of focal power and energy gain with phase, 
in agreement with (7) and (10). The curves through 
the points are least squares harmonic fits; two har
monics were sufficient in all cases, the ampl itude 
of the second harmonic never being more than 15% of 
the first and usually much smaller. The presence 
of the second harmonic component is attributable to 
'velocity gain' focusing effects. For the symmetric 
gap the first harmonic components indicated transi
tion phases .z=llo, .x=-3° and .m=Oo; theoretically 
all should be 0°. For the asymmetric gap .m=9° has 
shifted to a lagging phase, as expected, while 
.z=-35° and .x=55° have moved wide on either side of 
.m, in accordance with (13). A considerable gain in 
vertical focusing has been achieved at the prime ac
celeration phase .m' while there has been an equally 
large reduction in horizontal focusing, as required 
by (4). The sum of l/fx and l/fz is also plotted on 
Figs. 3 and 4 for comparison with -(h/2RTc) a6T/a •. 
In the symmetric case they have similar shapes al
thou9h the sum is distorted away from the origin by 
15% zero and second harmonic components in l/fx ' In 
the asymmetric case the agreement is qui te good, in 
spite of the l/fx and l/fz curves individually 
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Fig. 3. Focal power vs phase for a symmetric 
non-uniform dee gap. 

having very different shapes. 

4. Focal Power from Equipotential Curvature 

To estimate the strengthof the focusing provided 
by dee gap shaping the integrals in (9) must be 
evaluated. These can be rewritten in terms of the 
curvature of the equipotentials to provide expres
sions which can be relatively easily evaluated from 
an equipotential plot. Noting that in a vertical 
(y-z) plane the slope of an equipotential 1 ine 
dy/dz=-Ez/E y ' and since in our approximation z is 
assumed independent of y within the gap field, we 
may wri te 

Fl q d rVo dy sin [hY) 
z = 2T c dz J dz cos R dV 

-Vo 

(15z) 

where we have changed to the potential V as indepen
dent variable and where ±Vo is the dee voltage. 
Clearly if the equipotentials are parallel there is 
no focusing. Similarly, in the median plane the 
slope dy/dx=-Ex/E y and 

S +Vo 
FA - _q_ ~ J dy sin [hYJ dV (15x) 

x - 2T c dx dx cos R 
-Vo 

_q_ J VOd2y sin [hY] dV (16x) 
2Tc dx2 cos R 

.J..Jo 
i.e. the focal power depends on the integral of the 
second derivative--loosely, the curvature--of the 
equipotential curves, modified by a factor to account 
for the RF oscillation in field strength. The 
transition phase .z may be derived from tan.z=F~/F~, 
and similarly for .x' If the transit time is rela
tively short so that hy/R«l, then for the phase of 
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Fig. 4. Focal power vs phase for an asymmetric 
non-uniform dee gap. 
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greatest interest ~m' which we assume is close to 
0°, 

(1 ]) 

Thus we can evaluate both vertical and horizontal 
focal powers at the phase of maximum energy gain for 
all radi i by examining just one equipotential plot, 
that for the median plane. 

In practice it is easier to use formulae 1 ike 
(15), integrating over the slope and then finding 
the variation with radius, than those like (16) or 
(17) where the integration takes place directly over 
the 'curvature'. From equipotentials plotted at say 
10% intervals of the dee voltage Va, the slopes 
dy/dx are estimated along a trajectory, added up and 
multipl ied by the proper constant; repeating this 
for trajectories at different radi i the radial 
derivative may be obtained, giving the value of 
l/fz(~m). As an example, Fig. 5 illustrates the 
focal power predicted by (17) for the field i llus
trated in Fig. 1, where an asymmetric non-uniform 
dee gap shape was introduced near the first half
turn gap crossing to provide higher vertical and 
lower radial focusing and hence al low better match
ing to the radial acceptance for positive phases;2 
(the region studied is enclosed by the two dashed 
1 ines in Fig. 1). For comparison the curve in Fig. 5 
shows the results of three-dimensional numerical 
orbit calculations at ~=-4°~~m of the difference in 
focal power between the field shown and that for a 
simi lar non-uniform but symmetric dee gap. The 
agreement is quite good. For more accurate results, 
and for phases different from ~m and 0°, one should 
use (15) or (16) in full, including the cos or sin 
(hy/R) weighting factors and computing the FS as 
well as the FA terms. 

It is also possible to estimate the energy 
gain terms 6T~ and 6T~ and prime accelerating phase 
~m from the median plane equipotential plot. From 
(5) and (10), and changing to V as independent 
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Fig. 5. Vertical focal pOUJer of the TRIUMF dee gap. 

variable, we find 

6T~ ± IVa C?s[hY) dV (18) 
m q sin R 

-Va 

and tan~m=6T~/6T~. For the asymmetric dee gap 
illustrated in Fig. 4 these formulae yield ~m=9.5°, 
in good agreement with the value of 9° quoted above 
and obtained by harmonic analysis of Han's numeri
cal orbit tracking results. 

From (1]) we see that if the equipotential 1 ines 
can be made parabol ic so that d2y/dx 2 is constant 
for each line, the focal power obtained will be uni
form along the gap. In this case the focal power at 
~m can be calculated from the integrals of the equi
potential slopes taken along just two trajectories 
chosen for convenience anywhere in the region: 

/2T I Va d I X2 =~ ~dV 
X2-XI dx . 

-Va Xl 

(19) 

A small region of this sort occurs close to any 
plane of mirror x-symmetry for the dee gap, e.g. 
midway between the vertical posts in the geometries 
studied by Han (Figs. 3,4) and for the' injection 
gap' where the beam crosses the TRIUMF dee gap for 
the first time. For the case shown in Fig. 4 (19) 
was used to obtain l/fz(~m)=-I/fx(~m)=0.083. These 
values are plotted on Fig. 4 as upright crosses for 
~m=9.5°, as determined above. There is good agree
ment with Han's numerical results for l/fz and l/fx' 

The simplicity of the formulae (15), (1]), 
(18) and (19) makes it possible to perform rapid 
hand calculations of the essential focal properties 
of the dee gap. This can result in a considerable 
saving in time and money during an iterative optimi
zation process, si nce the focal properties of various 
electrode shapes can be determined quickly and with
out recourse to numerical orbit tracking in three 
dimensions. However, such orbit calculations, based 
on a very accurate electric field ('00.1%), should be 
performed before transforming any designs into 
hardware; at TRIUMF the field has been obtained by 
a three-dimensional relaxation programme. 
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