THE PRODUCTION OF RADIONUCLIDES ¹²³I, ⁷⁷BR FOR NUCLEAR MEDICINE WITH HIGH ENERGETIC ⁴HE PARTICLES.

F.Helus, W.Maier-Borst

Deutsches Krebsforschungszentrum, Institut für Nuklearmedizin, 69 Heidelberg, Germany.

R.M.Lambrecht, A.P.Wolf

Brookhaven National Laboratory, Chemistry Department, Upton, New York 11973, USA.

Abstract

The feasibility of using 50-102 MeV alpha particles to produce the $12_{3}Xe \rightarrow 12_{3}I$ and $7_{7}Kr \rightarrow 7_{7}Br$ generators were evaluated using targets of natural sodium iodide and sodium bromide. Thick target yields of direct and indirect produced $12_{3}I$ and $7_{7}Br$ have been measured. Production rates for other resulted radionuclides were also measured, and the level of indirectly produced $12_{5}I$ impurity were determined.

Introduction

The desirable physical characteristics of iodine-123 that make the nuclide, if used in high radionuclidic purity, nearly ideal for radiopharmaceutical applications are well known. The highest purity 123 I available is produced from the 123 Xe 2.1hr, 123I generator, since the radiohalogens produced by direct nuclear reactions can be removed from 123 Xe parent before it decays to 123I1,111 . The radioiodine of consequence is then 125 I, which arises from the concurrent production of 125 Xe with 123 Xe and the decay of 125 Xe (125 Xe 16.8hr, 125 I) simultaneously with the decay of the 123 Xe. A compilation of some in literature described reactions for direct production of iodine-123 is listed in table 1.

TABLE 1

Reported methods of ¹²³I production - Direct reactions

Reaction	Incident beam energy (MeV)	Target material (natural-enriched %)	Thick Target yield (mCi/µAh)	Reference
¹²¹ Sb (⁴ He,2n) ¹²³ I	25	Sb - nat.	0,150	(2)
¹²³ Sb(³ He,3n) ¹²³ I	23	Sb - nat.	0,024	(3)
¹²² Te (d,n) ¹²³ I	7	Te - 95,4	0,100	(1)
¹²³ (p,n) ¹²³ I	19	Te - 79,0	0,440	(1)
¹²⁵ Te (p,2n) ¹²³ I	28	Te - 96,2	0,54	(1)
¹²⁵ Te (p,3n) ¹²³ I	36	Te - 95,5	0,85	(1)

Most of the cyclotron production methods producing 123 Xe have been evaluated and are shown in table 2.

TABLE 2

Reported methods of 123_{I} production -Generator systems $123_{Xe} + E_{I} + 123_{I}$.

Reaction	Incident beam energy (MeV)	Target material (natural-enriched %)	Thick target yield (mCi/µAh)	Reference
¹²² Te (a, 3n) ¹²³ Xe	46	Te - 95,0	0,200	(4)
$122_{Te}({}^{3}_{He}, 2n)^{123}_{Xe}$	27	Te - 90,9	0,530	(1)
123Te (³ He, 3n) ¹²³ Xe	30	Te - 76,5	1,10	(1)
¹²⁷ I (p,5n) ¹²³ Xe	57,5	I ₂ - nat.	3,0	(5)
¹²⁷ I (d,6n) ¹²³ Xe	78	NaI- nat.	8,0	(6)
124_{Te} (α , 5n) 123_{Xe}	85	Te - nat.	0,250	(7)
127_{I} (a, 8n) 127_{Cs}	102	NaI- nat.		this work

The alpha reaction with 46 MeV alpha's has been in routine production⁴) as a source of 123_I for clinical use. The proton⁵) and deuteron⁶) spallation reactions $123_{I}(p,5n) 123_{Xe}$, $E_{\rm H}=50-65$ MeV and $127_{I}(d,6n) 123_{Xe}$, $E_{\rm D}=65-69$ MeV result in 123_{I} of nearly comparable purity. Certain accelerators such as the Karlsruhe cyclotron have 102 MeV alphas, but protons and deuterons too low energy to produce 123_{Xe} by either reaction.

In this study we have tested the feasibility of using high energy alpha reactions to produce $1^{23}Xe \rightarrow 1^{23}I$ generator. Alpha reactions on $1^{27}I$ (100% natural abundance) were tested. The reactions concerned are shown in table 3. Nuclear reactions with high energy particles are more complicated than lower energy reactions. From our preliminary experiments it followed that $1^{23}I$ is produced in two different ways - either by the direct reaction or indirectly via $1^{23}Cs$ or $1^{23}Xe$. When we consider only very simple reaction mechanism then last two reactions in table 3 described directly produced $1^{23}I$. For indirectly produced $1^{23}I$ we assume the reactions $1^{27}I$ (⁴He,8n) $1^{23}Cs$ and $1^{27}I$ (⁴He, p7n) $1^{23}Xe$.

Proc. 7th Int. Conf. on Cyclotrons and their Applications (Birkhäuser, Basel, 1975), p. 474-477

0

TABLE 3

	Reaction	((MeV)
127 _I	$({}^{4}\text{He},4n){}^{127}\text{Cs} \longrightarrow {}^{127}\text{xe} \longrightarrow {}^{127}\text{I}$ (stab.)	-	32,61
127 _I	(⁴ He,5n) ¹²⁶ Cs ¹²⁶ Xe (stab.)	-	42,75
127 _I	(⁴ He,6n) ¹²⁵ Cs → ¹²⁵ xe → ¹²⁵ I	-	50,91
¹²⁷ I	(⁴ He,7n) ¹²⁴ Cs ¹²⁴ Xe (stab.)	-	61,50
127 _I	(⁴ He,8n) ¹²³ Cs ¹²³ xe ¹²³ I	-	70,04
127 _I	(⁴ He, ⁴ He n) ¹²⁶ I	-	9,14
127 _I	(⁴ He, ⁴ He2n) ¹²⁵ I	-	16,24
127 _I	(⁴ He, ⁴ He3n) ¹²⁴ I	-	25,84
127 _I	$(^{4}\text{He}, ^{4}\text{He4n})^{123}$ I	-	33,30
127 _I	(⁴ He,2p 6n) ¹²³ I	-	61,60

Reactions $(\alpha, 8n)$ and $(\alpha, 6n)$ have been studied previously¹², but the objective of that study was the identification and nuclear decay properties of ¹²³Cs and ¹²⁵Cs. Cross-section and yield data have not been reported. Xenon was separated from the target material by using two different techniques - generator method of Sodd¹⁾ and chemical method.

Bromine-77 appears to be the best bromine nuclide, because it has a 56hr halflife and lower energy gamma radiation than either 76 Br or 82 Br. The published production methods and potential production reactions are shown in table 4.

TABLE 4

Radionuclides produced by 100 MeV alpha bombardment of sodium iodide

Nuclide	Half-life	Er (keV)	Analyzed gamma-lines abundance %	s Thick target yield ^{μCi/} μAh EOB
121 _I	2,12 h	212,5	84,3	1359,4
121 _{Te}	17,0 d	573,08	79,1	5,6
¹²³ xe	2,08 h	148,70	50,0	541,6
1231	13,3 h	159,10	83,0	684,0
¹²⁴ I	4,17 d	602,71	62,0	34,2
¹²⁵ Xe	16,8 h	188,43	55,0	1022,9
125 ₁	60,14 d	calcula	ted from ¹²⁵ Xe	12,1
¹²⁶ 1	12,8 d	388,47	35,4	24,9
¹²⁷ Cs	6,25 h	411,1	63,0	1812,9
¹²⁷ xe	36,406 d	202,84	58,2	22,0
²⁴ Na	15,0 h	1368,55	100,0	403,1

Production of $77_{\rm Br}$ by the alpha particle bombardement of arsenic pentoxide has been

made on routine basis for clinical use^{9,13)}. In future ⁷⁷Br may find use in generator systems¹⁰⁾ as a label for bromine compounds and as an alternative to iodine when preparing radiopharmaceuticals¹⁴⁾. Advantage in producing ⁷⁷Br by means of ⁷⁷Kr decay is the possibility of excitation labeling. In the production method described here, natural sodium bromide is bombarded with alpha particles in the energy range 50-102 MeV.

Experimental

The irradiations were performed at the Kernforschungszentrum cyclotron at Karlsruhe¹⁵⁾. Energy selection was made by placing the internal target at the appropriate radius in the cyclotron. The integrated dose was measured only by the integration of the cyclotron beam current. For the yield figures the irradiation dose was 150 uAsec at a beam current of 0,5uA. The salt targets were pressed at 10kp/cm² and mounted in an Al target holder (5mmx7mmx11mm) and sealed with a 0,020mm Al foil of 99,99% purity. The sodium iodide and bromide (Merck) salt targets varied from 150 to 160 mg/cm². Identification and assay of gammaray emitting radionuclides were done on a 4096-channel Ge(Li) Intertechnique spectrometer combined with a Multi-20 small computer. The computer provided photopeak integration, a spectral plot and half-life information. Because of the transportation distance between Karlsruhe and Heidelberg, it was not possible to assay radionuclides with very short half-lives.

Results and Discussion

TABLE 5

Production rates of direct and indirect ¹²³I produced by 60 - 102 MeV alpha bombardment of sodium iodide.

Eα	Thick	target	yield	of	123 _I			
MeV	Direct µCi/	produced /µAh ¹²³ I			µCi/µAh	Indirect ¹²³ Xe	produced µCi/µAh	123 ₁
60	9	9,0			_		_	
70	84	1,8					_	
80	204	i, 1			_		_	
85	254	1,2			11,4		3,1	
90	328	3,4			65,2		17,4	
95	415	5,2			225,2		60,1	
100	539	9,3			541,6		144,7	
102	520	6,9			626,8		167,1	

The thick target yield of radionuclides produced by 100 MeV alpha bombardement of

sodium iodide were determined and are listed in table 5.

 124 I and 126 I nuclides can be produced only by direct reactions, because 124 Xe and 126 Xe are stable isotopes. The most probable reac-tions to produce ¹²⁴I and ¹²⁶I directly are shown in table 3. Presence of all directly produced radioiodines does not affect the radionuclidic purity of the 1231 if the radioxenons are separated from the NaI either during or immediately after the irradiation.

Table 6 summarizes the thick target yield measurements for the production of 123Xe by bombardement of NaI with 60-102 MeV alphas.

TABLE 6

Methods of ⁷⁷Br production

Direct reaction	Q (MeV)	Reference
⁷⁵ As (⁴ He,2n) ⁷⁷ Br	-13,51	(9)
⁷⁶ Se (d,n) ⁷⁷ Br	- 3,04	
⁷⁸ Se (p,2n) ⁷⁷ Br	-12,64	
Indirect reaction		
⁷⁶ Se (⁴ He, 3n) ⁷⁷ Kr ⁷⁷ Br	-26,81	(10)
⁷⁶ Se (³ He,2n) ⁷⁷ Kr - ⁷⁷ Br	- 6,23	
⁷⁹ Br (p,3n) ⁷⁷ Kr ⁷⁷ Br	-22,76	
⁷⁹ Br (⁴ He,6n) ⁷⁷ Rb - ⁷⁷ Kr -	. 77 _{Br} -48,44	this work

The data indicate that the production rate

The data indicate that the production rate of 12^{3} xe increases from 11,4 to $626,8 \,\mu\text{Ci}/\mu\text{Ah}$ between 85 and 102 MeV. 12^{3} Xe was not observed at $E_{\alpha} < 85$ MeV. The yield of 12^{3} Xe and its corresponding yield of 12^{3} I is too low, and the produc-tion rate of 12^{5} I too high (as follows from table 4) to make the alpha reactions on table 4), to make the alpha reactions on ^{127}I of practical value at these energies.

Similar work has been done to investigate the possibility to produce $^{77}\text{Kr} \rightarrow ^{77}\text{Br}$ generator. The production rates obtained for directly and indirectly produced $^{77}\mathrm{Br}$ with 60-102 MeV alphas are given in table 7.

TABLE 7

Production rates of direct and indirect ⁷⁷Br produced by 50 - 102 MeV alpha bombardment of sodium bromide.

Eα	Thick target	yield of ⁷⁷ Br	
	Direct produced	Indirect	produced
MeV	uCi/uAh ⁷⁷ Br	µCi/µAh ⁷⁷ Kr	μCi/μAh ⁷⁷ Br
60	30,50		_
65	53,90		_
70	76,46	34,20	0,77
75	89,21	87,52	1,98
80	81,87	254,14	5,75
85	123,53	513,72	11,63
90	172,90	624,20	14,13
95	238,25	1298,30	29,40
100	281,28	1784,50	40,41

⁷⁷Kr yield increases very rapidly from 34 to 1784 /uCi/µAh with alpha energy from 70 to 102 MeV. From yield figures at 100 MeV alpha energy it follows that only about 12% of the obtained 77Br is produced via 77Kr. The nuclear reaction leading to 77Br and 77Kr are expected to occur more favorably for routine production of 77Br only when higher beam currents or higher alpha energy are available.

Table 8 summarizes production rates of radionuclides produced by 100 MeV alphas.

TABLE 8

Radionuclides produced by 100 MeV alpha bombardment of sodium bromide

Nuclide	Half-life	Analyzed	d gamma-lines	Thick target yield
		E	abundance	uCi/µAh EOB
		(keV)	(8)	
74,	1774	505 7	50 S	2 22
75	17,7 u	333,1	59,5	2,52
As	120 đ	135,9	58,0	3,74
⁷⁵ Br	100 m	286,5	80,0	748,56
⁷⁶ Br	15,9 h	559,0	65,7	380,40
77 _{Kr}	1,24h	129,7	84,0	1784,50
77 _{Br}	56 h	238,9	26,0	321,70
⁷⁹ Kr	34,9 h	261,3	11,0	265,13
81 _{Rb}	4,7 h	446,3	23,5	1631,06
82m _{Rb}	6,4 h	776,8	83,0	236,77
83 _{Rb}	83 d	529,6	30,4	2,66

The most important impurity is $^{/6}$ Br from the decay of 76 Kr. This can be limited by allowing the 77 Kr to decay only for three balf-lives. By write the set of half-lives. By using the gas flow system

 77 Kr can be separated from directly produced radiobromines and other contaminants. This is the first report of the use of 70-102 MeV alpha bombardement to produce 77 Kr \rightarrow 77 Br generator.

Acknowledgment

We are indebted to the cyclotron staff of the Kernforschungszentrum Karlsruhe for their active cooperation and H.ASMUS and H.SCHULTZ for the continuous help.

References

- Sodd,V.J., Blue,J.W., and Wellman,H.N., U.S.Department of Health, Education and Welfare Publication BRH/DMRE 70-4 (1970)
- 2) Silvester, D.J., Sugden, J., and Watson, I. A., Radiochem. Radioanal Letters <u>2</u>, 17 (1969)
- 3) Dahl,J.R., and Tilbury,R.S., Int.J.Appl. Rad.Isotopes <u>23</u>, 431 (1972)
- 4) Lambrecht, R.M., Wolf, A.P., Radiation Research <u>52</u>, 32 (1972)
- 5) Fusco,M.A., et al., J.Nucl.Med., <u>13</u>, 729 (1972)
- Weinreich, R., Schult, O., and Stöcklin, G., Int.J.Appl.Rad.Isotopes <u>25</u>, 535 (1974)
- 7) Lambrecht, R.M., et al., (in press)
- 8) Erdtmann,G., Soyka,W., Die -Linien der Radionuklide, KFA JÜL-1003-AC, Apr.1974
- 9) Helus,F., Radiochem.Radioanal.Letters <u>3</u>, 45 (1970)
- 10) Blue, J.W., Benjamin, P.P., J.Nucl.Med.<u>12</u>, 416 (1971)
- 11) Lambrecht,R.M., et al., J.Nucl.Med.<u>13</u>, 266 (1972)
- 12) Mathur,H.B., Hyde,E.K., Phys.Rev.<u>96</u>, 126 (1954)
- 13) Nunn,A.D., Nucl.Instruments and Methods 99, 251 (1972)
- 14) Sargent,T., et al., J.Nucl.Med.<u>16</u>, 243
 (1975)
- 15) Schulz F., and Bellman H., KFK Report, Karlsruhe <u>685</u>, Dec. (1967)