OPERATION OF RILAC AT RIKEN

Y. Miyazawa, M. Hemmi, T. Inoue, T. Kambara, M. Yanokura, M. Kase, T. Kubo, E. Ikezawa, Y. Chiba, and I. Tanihata RIKEN: The Institute of Physical and Chemical Research Wako-shi, Saitama 351-01, Japan

Machine operation

Summary

The paper outlines the present status of the RILAC's increasing records on beam quality. Output currents and the number of ion species have been increased by the improvement of PIG source. Recently a pulsing of the RILAC beam has been tried using the rapid switching of the relative rf phase between accelerating tank 1 and tank 2.

Introduction

The RILAC started its operation in 1981 and has been used for studies in atomic collisions, solid state physics, and others. It will be also used as an injector for the Ring Cyclotron at RIKEN which is finishing a final assembly. Figure 1 shows the layout of the RILAC. It consists of a 500 kV electro-static injector and six accelerating tanks. A dotted line is the injection beam line for the Ring Cyclotron. Table 1 gives a specification of the RILAC. Figure 2 shows the relation between acceleration energies frequencies, and effective acceleration voltages. The RILAC continues to deliver various kinds of ion beams for many fields of research. Table 2 gives statistics of operation in the period of July 14, 1985-July 13, 1986. The machine was operated five days a week except Saturday and Holiday. Figure 3 shows statistics of ion used. Most of users preferred Ar ion, and 45 % of the total beam time was used for this jons.

Multicharged ions, C²⁺, N³⁺, Ne³⁺, Ar⁴⁺, Kr⁸⁺, and Xe⁹⁺, have been used. Ions of solid elements such as Mg³⁺, Al³⁺, Si³⁺, Ti⁵⁺, Cr⁵⁺, Ni⁶⁺, and Cu⁶⁺, produced by a spattering PIG source, have also been accelerated and delivered into various target stations. A transmission efficiency of ion beam from ion source to the linac exit is 5 - 10 %. Table 3 gives the output currents of the RILAC ion source. The dashed line shows the lower limit of the charge to mass ratios which can be accelerated by the RILAC.

A pulsing of beam has been tried modulating the relative rf phase between accelerating tank 1 and tank 2. The pulsing of the beam in a time range longer than 1 msec has been successfully obtained. Figure 4 shows a pulsed beam obtained by the phase modulation of tank 2.

Fig.l. Layout of the RILAC

Beam time

Table 1. Specification of the RILAC.

- SPECIFICATION-

Special Feature	Variable Frequency						
Frequency Range	17~45 MHz						
Charge to Mass Ratio	>1/27						
Max. Energy	4 MeV/n for q/m=1/4 0.8 MeV/n for q/m=1/2						
Mode of Operation	cw						
Effective Acc. Voltage	16 MV (total)						
Energy Tuning	Continuous						
Injector Voltage	500 KV max						
Ion Source	PIG						
Accelerating Structure	Wideroe						
Resonator	1/4X coaxial						
Number of Tanks	6						
Drift Tube Aperture	20~30 mm						
Field Gradient of Drift tube	6kG/cm(max)						
Radial Phase Acceptance	200 mm-mrad						
Operating Pressure	~10 ⁷ Torr						
Start of Operation	1981						

Fig. 2. Relation between energies, frequencies, and effective acceleration voltage.

Frequency change Overhall and improvement work Periodical inspection and repair										r	19 36 19		5. 9. 5.	2 9 2		
Sc	Scheduled shut down $\frac{109}{365}$ 29.8															
	80								157							
	70 -								22121212122							
	60-								ALCONTRACTOR OF							
	50 -								Convertient State							
sk	40 -								RESS CIVE 2							
Day	30 -	No. of Concession, Name							21410-242263							
	20 -	TRACE AND							and the second second							
	10	TANKIN E					PERSONAL PROPERTY		CHERKS							
	8 -	ANN DE LEVEL		CONSULT OF			al states and		verse er				塑			
	4	STATES OF STATES	55	1925-1230 0345/2755	1000		A STREET	E	en andre andre a				all states		244530	
	² E	17.43W	242644	No.2 Mi	Notes to the	146	ST FLORE	1000	LINES M	and a	and	1	IN SYSTEM	CONTRACT OF	MELAT	2433
(Charge state	1	2	2 3	2	3	3	3	4 6	5	5	6	4 6	7	8	9
		He	С	N	Ne	Mg	Al	Si	Ar	Ti	Cr	Ni	Cu	Ge	Kr	Xe
	Fig	.3.	S	tat	is	tic	s	of	us	ed	ic	ns				

Table 2. Statistics of operation in the period

Days 182 % 49.9

of July 14, 1985 - July 13, 1986

Fig.4. Photograph shows a pulsed beam obtained by the phase modulation of 10 msecond.

Table 3. The output currents of RILAC ion source. Gases in the parenthesis are used to support the discharge. The dashed line shows the lower limit of the charge to mass ratios which can be accelerated by the RILAC.

		!1+	2+	3+	4+	5+	6+	7+	8+	9+	10+	11+	12+
Не		170	5										
С		24	100	-	0.6								
N		60	100	70	30	3							
Ne		40	80	52	5.2	0.2							
Ar		4.5	52	100	100	60	8	6					
Kr		1	13	48	52	64	58	23	5.8	0.4			
Xe		0.14	3.8	20	41	80	·90	85	52	11	3	-	0.1
										Sput	teri	.ng mater	ials
Na	(Ar)	15.5	4.3	0.6							Nal	. crystal	
	(Xe)	; -	17	1.1	0.02						"	"	
Mg	(Ar)	4	23	5	0.25						Mg	block	
	(Xe)	-	60	7	0.2						n		
A1	(Ar)	13	-	70							A1	block	
	(Xe)	-	30	30	2.8						"		
Si	(Ar)	2.5	-	12	2.5						Si	crystal	
	(Xe)	1	8	7	1	0.02						u	
Ti	(Ar)	1	8	8	11	-					Ti	block	
	(Xe)		-	-	7	0.8	-				11		
Cr	(Ar)	1.2	9	15		-	2	0.1			Cr	block	
	(Xe)	1.5	-	-	27	11	1.4	0.03			"	11	
Fe	(Ar)	2	10	10	-	5.5	0.8	-			Fe	block	
	(Xe)	2.8	-	-	4.5	3	1.2	-			"	11	
Ni	(Ar)	•									Ni	block	
	(Xe)	-	- !	-	-	1.8	0.3	0.02			"	34	
Cu	(Ar)	1	6	-	12	-	-	0.3			Cu	block	
	(Xe)	-	- !		8.5	4	1.3	0.25			"	n	
Ge	(Ar)	-	- :	0.9	2	6	6	5	Ż		Ge	crystal	
	(Xe)	-	- !	-	-	-	-	0.05	0.07		**		