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Abstract 

A general relativistic Hamiltonian is derived which 
describes energy, phase and centre coordinates of an 
accelerated particle in an AVF cyclotron. In this 
Hamiltonian terms are present which result from cou
pling between the azimuthally varying magnetic field 
and the acceleration structure. One example of this 
coupling is the well known gap crossing resonance. 
We find that for certain combinations of the magnetic 
field symmetry number N and the number of dees a new 
term may be present in the Hamiltonian which affects 
the energy and the centre position phase of the parti
cle. As an example this term has been given for the 
minicyclotron ILEC in construction at the University 
of Eindhoven (having N ~ 4, two dees for 2nd harmonic 
acceleration and two flattop dees in order to obtain a 
well defined energy in the extracted beam). The deri
vation of the Hamiltonian combines theories for non
accelerated and accelerated particles developed earlier 
in our group. The theory for non-accelerated particles 
was reformulated such that the acceleration process 
could be incorperated easily. The treatment of accele
ration has been generalized such that most practical 
dee systems, including spiral dees, are incorperated. 
Furthermore, different dee systems are treated simul
taneously. The final Hamiltonian contains only slowly 
varying terms so that the equations of motion derived 
from it can be integrated easily on a small computer. 

1. Introduction 

During the past thirty years many papers have been 
published which deal with the theoretical description 
of orbits in cyclotrons. Initially much attention waS 
given to the time independent orbit behaviour.l~3) In 
recent years progress has been made with regard to the 
influence of dee structures on the orbit behaviour 4,5) 
As a first approach acceleration may be studied in 
combination with a homogeneous magnetic field. This 
simplifies the analysis and the effects related to the 
specific dee structure are clearly shown. Moreover, 
acceleration in a homogeneous field can be analysed 
very nicely in a cartesian coordinate system. After
wards the theory may be generalized by just adding the 
models for non-accelerated motion in an AVF cyclotron 
and accelerated motion in a homogeneous magnetic field 
together. 4

) It is obvious however, that resonances 
arising from interaction between the magnetic field 
flutter and the geometrical structure of the dees are 
not included in such an analysis. An example of this 
coupling is the well known gap crossing resonance first 
reported by Gordon. 5

) In order to describe these 
effects the azimuthally varying magnetic field has to 
be incorperated right from the beginning. An onset for 
such a theory has been given in ref. 7. Here expres
sions are derived for the gap crossing resonance in a 
three-sector cyclotron with one dee. Extension of this 
model becomes however rather complicated due to the 
cartesian coordinate system which was used. 
In this paper we derive a general Hamiltonian theory 
for the accelerated motion in AVF cyclotrons. In sec
tion 2 we define the magnetic field shape and the elec
tric potential function and give the Hamiltonian for 
the motion of the particle. For convenience we ignore 
the vertical motion. In section 3 we generalize a 
treatment for the time independent orbit behaviour as 
developed in ref. 3 in such a way that also accelera
tion effects can be taken into account. 
Some transformations are applied to remove fast oscil
lating terms in the Hamiltonian. The final Hamiltonian 
describes the coordinates of the orbit centre and also 

the energy and phase of the particle. Furthermore we 
obtain expressions for the coordinates of the particle 
as function of the canonical variables. These expres
sions are needed for the study of the accelerated 
motion. In section 4 we analyse accelerated motion in a 
cylindrical symmetric magnetic field. We generalize an 
approach as given in ref. 4 such that also multy-dee 
systems and sprial gaps can be handled. In section 5 
accelerated motion in azimuthally varying magnetic 
fields is studied. This results in a Hamiltonian which 
describes the resonances arising from coupling between 
the flutter and the dee structure. 

2. The basic Hamiltonian 

The Hamiltonian H for the accelerated motion of the 
particle in the median plane can be written as follows: 
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where mo is the rest mass and q the charge of the par
ticle, c the speed of light, rand 8 the polar coordi
nates, Pr and Pe the canonical momenta, t the indepen
dent variable time, V(r,e) the spacial distribution and 
wRF the RF-frequency of the acceleration voltage, Ar 
and Ae the components of the magnetic vector potential. 
The vector potential is found from the magnetic field 
B(r,e) in the median plane. We split B(r,e) in an ave
rage field B(r) and a flutter profile f(r,e), expand 
f(r,e) in a Fourier series and split B(r) in a constant 
part Bo and a radius dependent part ~(r). This gives 
for B(r,e): 

B(r) (1 + f(r,e)) (2. a) B(r,e) 

f(r,e) riAn(r)cos ne + Bn(r)sinne,n~kN, k~1,2,3, .. (2.b) 

B(r) (2. c) 

with h the mode number of the acceleration and N the 
symmetry number of the cyclotron. Using a left-handed 
coordinate system, a related vector potential is given 

by: 2 r 
AO -~Bor(1+U) U(r) ~ 2 J r'~(r')dr' (3.a) 

r 0 

A B 
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We also make a Fourier analysis of the potential func
tion V(r,e). For convenience we only take into account 
the cosine component.s. In order to include spiral dees 
we assume the following distribution: 

V 00 

V(r,8) ~ 2 m~-oo amcosm(e-~(r)), a_m 
a 

m 
(4) 

where V is the maximum dee voltage and ~(r) represents 
the spiraling of the dees. We insert the eqs. (3) and 
(4) in eq. (1) and scale the variables by deviding the 
momenta by qBo, the Hamiltonian H by mow02 and by mul
tiplying the time with wOo The Hamiltonian now becomes: 

H 

with A 

2 2 ~ qV 00 • 

;, (1+ 2H
c1

r\ ) + -:2 m,E_ooamCosm(8-~(r))s1nht(5.a) 

c/w and V 
o 

V 1m (J 2 
o 0 

(5.b) 

Proceedings of the Eleventh International Conference on Cyclotrons and their Applications, Tokyo, Japan

256



3. The time independent orbit behaviour 

The Hamiltonian for the non-accelerated motion, obtai
ned by inserting V ~ 0 in eq. (5), does not depend on 
t and thus is a constant of motion. Expressed in the 
kinetic momentum P this constant becomes: 
H ~ AZ(l+PZ/AZ)!. The non-accelerated motion may now be 
solved by choosing -Pe as the new Hamiltonian and e as 
the independent variable. The Hamiltonian is found by 
solving Pe algebraically from eq. (5). In this way the 
number of variables is reduced to two namely rand Pr. 
If only the time independent orbit behaviour has to be 
studied this approach works nicely.3) For the incorpe
ration of the acceleration process, which has to be 
described by four canonical variables, this method is 
however not convenient. We therefore derived a more 
general solution of the time independent orbit behavi
our. Since the derivation is rather tedious we only 
point out the basic steps needed to obtain the final 
result. In order to remove the e-dependency of the 
Hamiltonian we must first of all eliminate the static 
equilibrium orbit (SEQ). The SEQ is defined as a closed 
orbit with the same N-fold symmetry as the magnetic 
field. We first consider the cylindrical symmetric 
field for which the SEQ will be a circle. Using the 
equations of motion derived from eq. (5) (with V ~ 0 

and F(r, e) ~ 0) we look for a solution r ~ ro~constant, 

Pr ~ o. This gives a relation between the constant of 
motion Pe and the radius ro of the SEQ:P e ~!roZ(l+Z~-U). 
Inserting this relation back in the expression for Hcl 
gives a second equation: Hcl ~ !roZ(l+~)Z. Comparing 
both equations we find that for ~ (r) « l the canonical 
variable Pe is closely related to the energy of the 
particle. Therefore we change the 'symbols and replace 
in the basic Hamiltonian Pe by E and the conjugate 
variable e by <I> and consider E as the "energy variable" 
and <I> as the "phase" of the particle. Furthermore we 
define a radius ro depending on E by the implicit rela-
tion: 

E ~ !r Z (l+Z~(r )-U(r )) 
o 0 0 

(6) 

The SEQ in an AVF cyclotron can now be written as: 

R 
e 

(7) 

where the yet unknown functions xe and Pe are of the 
same order of "magnitude as the magnetic field flutter f. 
The SEQ can now be removed by introducting new varia
bles ~ ~ r-Re and IT ~ Pr - Pe which describe the radial 
motion with respect to the SE~. In order to have a 
canonical transformation, also the variables E and <I> 
have to be changed. We choose a generating function 
which depends on the old momenta Pr,E and the new coor
dinates ~,~ : 

G ~ -E¢-P (R (r ,¢) + ~ )+P (r ,¢) ~ , r ~r (E) (8) 
reo eo 00 

The new Hamiltonian is found by expressing the old 
variables r, Pr , E,<j> in the new variables ~ , IT ,E,¢ and 
inserting these relations in Hcl. It is however not 
possible to solve r,Pr,E and <I> exactly from eq. (8). 
This difficulty can be overcome by representing Hcl as 
a power series in IT and ~: 

Hcl ~ Ho + Hl + HZ + H3 + H4 + .. (9) 

where Ho is independent of ~ and IT , Hl is linear_in ~ 
and IT etc. The expansion coefficients depend on E and ¢ 
and contain the magnetic field quantities ~,~ and Bn . 
The problem may thus be approximated by taking into 
account terms up to first order in An and Bn, i.e. a 
first order approximation in the magnetic field flutter 
f. This would however be a too rough approximation. The 
reason for this is that in the final result to be deri
ved, the first significant terms in Ho and H2 are of 
the order f2 and in H3 and H4 of the order f. Thus, in 
order to obtain proper results, we have to keep terms 
in Ho ,Hl and H2 up to second order and terms in H3 and 

H4 up to first order in the flutter. Moreover, we have 
to assume that derivatives of the function ~ with res
pect to radius are of the same order of magnitude as 
the flutter squared. For an isochronous magnetic field 
with stable vertical motion this is in fact the case. 
Using the approximations outlined above the relations 
between the old and new variables and the new Hamilto
nian can be calculated. The functions xe and Pe defined 
in eq. (7) are obtained from the requirement that Hl 
has to vanish. In this case ~ and IT describe free 
oscillations around the SE~. This results in a Fourier 
representation of the SE~. We note that if Hl is made 
to vanish, the relativistic Hamiltonian H doesn't con
tain linear terms either. This can be verified by sub
stituting eq. (9) in eq. (5) and expanding the square 
root in H. The new Hamiltonian still depends on ¢ and 
thus contains fast oscillating terms. In order to be 
able to remove these terms we first introduce action 
angle variables I, X which des cribe the radial motion 
in a co-moving coordinate system. The generating 
function for this transformation is gi ven by: 

_ -- IT IT I 2' 
G ~ -I <I> -E <I> - I·arcsin( l-~' 2I(1+ ~ )-IT (10) 

hI(l+~) £\'T ~ ) 

with X,E the new momenta and I, ~ the new coordinates. 
Note ~hat the function ~ in eq. (10) depends on ro~ 
~ ro(E), according to eq. (6). The shape of the Hamil
tonian resulting from this transformation is such that 
all oscillating terms can be transformed to higher 
order in the flutter. The method for finding the gene
rating function is described in ref. 3. The transfor
mation is rather complicated and we therefore only give 
the final Hamiltonian up to fourth degree. In each de
gree terms up to the first significant order are kept. 
Before writing down the Hamiltonian, we express the 
action angle variables I and X in cartesian coordinates 
x ~ 12I'cos :!< and y ~ /2I'sinic which represent the posi
tion of the orbit centre (see ref. 3) and we describe 
the phase of the particle with respect to the co-moving 
coordinate system, i.e. ~~ ~-t with ¢ the new phase. 
The final Hamiltonian H becomes: 

H -E +A
2
/1+ZH

cl
/A

2 

{ 
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r
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cl 0 n 2(n -0 r (1+~) 
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1
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o 

( 11) 

The expressions for Vr, Dl, D2' Eo, El and EZ are given 
in ref. 3. It should be noted however that we find 
slightly different expressions for El and EZ due to a 
small error in the original derivation, namely: 

E ~ (15A' + 9A" + A"')/6 and E ~ (15B' + 9B" + B"') / 6 
1 ,~ 4 4 ,,_ ~2 ~ 4 4 

where A4 - (rdA4/dr)r
o

' A4 - (r d A4/dr )ro ' etc. 

The Hamiltonian describes the position coordinates of 
the orbit centre X,y and the energy E and phase ¢ of a 
non-accelerated particle in an azimuthally varying 
magnetic field. The radius ro in the Hamiltonian has to 
be considered as a function of the canoncial momentum 
E according to eq. (6). All field quantities in H have 
to be evaluated at radiu~ r ~ roo The Hamiltonian does 
not depend on ~ so that E is a constant of motion as 
had to be expected. The isochronous magnetic field 
shape Biso(r) is found from: 

d ~ _ aH ~ aH dro 
- 0 with x ~ y ~ o. 

dt - aE aro dE -
This leads to the expression for Biso(r) as derived in 
ref. 3. 
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The motion of the orbit centre is found from 
dx _ 3H dy _ 3H 
dt - ay' dt - 3x· 
For the study of the acceleration process we need the 
relations between the position coordinates r, e and the 
variables x,y,E, ~ and t. These relations are determined 
by the successive transformations applied on the Hamil
tonian. The relations can be written as fo llows: 

(0) (0) 
r = r + ~r, e = e + ~e ( 12) 

where reo) and e (o) contain terms which do not depend 
on the Fourier coefficients An and Bn and ~r and ~e 
conta in all extra terms resulting from the azimuthally 
va rying part of the magnetic field. We give reo) and 
e (o) up to second degree in x and y and ~r and ~e up to 
first degree and up to fi r st order: 

reo) r o L1+ r B2 +~ rA~ + . .. J, e (0)= ~+t+rA2 :B4 + 
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fi+i:;' 
r 

o 

fi+i:;' 

2(n2-1)f +3f' 
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[YCOS ( ~+t) - XSin( ¢+t)j 

[xcOS( ~+t)+ysin( i+t)] 

A 
--2 + 
r 

o 

A cosn 
n 

(~ + t) + B sinn 
n 

( ~ + t) 

- nA sinn ( ~ + t) + nB cosn ( ¢ + t) 
n n 

(13) 

4 . Accelerated motion in a cylindrical symmetri c magne-
tic fi e ld 

We now return to the basic Hamiltonian given in eq. (5). 
The total Hamil t onian may be spli t up in two parts: 
H = HAVF + Hac where HAVF is the Hamiltonian for the 
non-accelerated motion given in eq. (1 1) and Hac repre
sents the effect of the RF-structure: 

qv 00 · 

Hac = ~ ~=-oo amcosm( e-~(r»sinht ( 14) 

First of all the transformations derived in the previ
ous section have to be applied on Hac. This means that 
the relations for rand e given in eq.(13) have to be 
inser ted in eq . (14). The new expression for Hac is 
found by expanding eq. (14) in a power series of the 
cent re coordinates x and y. The result can again be 
split t ed in two parts: Hac = H(o) + ~H where H(O) con
tains the terms which are independent of the flutter 
and ~H contains all extra terms arising from t he az i
muthally varying field. For the moment we ignore the 
effec t of the flutter and put ~ r = ~e = 0 in eq . (12). 
We expand H(O) in x and y up to second degree and 
introduce a new phase ~ in order to remove the spiral 
function ~ from the x,y-independent part of H(O). The 
generating function for this transformation is: 

ro<E) 

-E~ - J 
E, ~ 

dE ~(r ')dr' 
dr 

o 
( 15) 

The Hamiltonian obtained at this point still contains 
an oscillating linear part which has to be removed. 
This is done by introducing new centre coord inate s 
which describe the centre motion of the particle with 
respect to the centre motion of a special solution of 
H(o) called accelerat ed equilibrium orbit (AEO). Of the 
resulting Hamiltonian we only have to keep the resonant 
terms. In most important order we find for H(o): 

( 16) 

xcos ~+ysin~ 

11"+0' 
-xsin~+ycos~ 

~ 
D = 

2 

h+1 h+2 , 2 
--2-- ah+1 , qh = --2--(h-(h+2) ~ )ah+2 , 

h+2 
-2- «2h+3) ~ ' + ~ ")ah+2 

This Hamiltonian can be used for study i ng the influence 
of the dee-structure on the energy and centre position 
phase of the particle and the motion of the orbit cen
tre. The Fourier-coefficients an may be obtained from 
measurements or numerical calculations or by assuming 
an idealized distribution of the acceleration vol t a ge 
for which the coefficients can be calculated. For 
example, for a two- dee system with straight gaps (~ =o) 
and half-dee anlge a : 

a = 2sinna ( 1+ (-1)n), n= ± 1, ±.2,... (17) 
n TI n 

where it is assumed that V = V in the dees and V = 0 
elsewhere. Substitution of this expression in eq. (16) 
g i ves the Hamiltonian derived in ref. 4. We note that 
the x , y- independent part of H(O) does not contain the 
spiral function ~(ro) . Therefore the energy ga in per 
turn is independent of the spiraling of the dees. 

5. Ac celerat ed motion in an azimuthally varying 
magnetic field 

The Hamiltonian ~H, describing the effect of the flut
ter on the accelerat ed motion of the particle is obtai
ned in the same way as HCO). We now insert the genera l 
expressions for rand e in Hac, expand the Hami ltonian 
in a power series of x and y and apply the transforma
tion g iven in eq. (15). In the result obtained, only 
the resonant terms are kept. In this way we arrive at 
a very general expression for ~H which can be applied 
for most practical dee systems. The expression is 
rather complicated but it simplifies considerably when 
one particular dee system is considered in comb ination 
with a given symmetry of the magnetic field. For conve
nience we only g ive t wo examples. Fo r a 3-fold symme
tri c field and an "idealized" one-dee system we find up 
to first order in the flutter and up to first degree in 
x and y: 

~H = 

( 18) 
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'IT • 
where a = 2 ~s the half dee angle. 

The terms linear in x and y represent the electric gap 
crossing resonance first reported by Gordon 6). 
The effect of this resonance is comparable with that of 
a first harmonic magnetic field error. 
As a second example we consider the minicyclotron ILEC 
in construction at the Eindhoven university. This 
cyclotron has a 4-fold symmetry, two dees for 2nd har
monic acceleration and two flattop dees in order to 
obtain a well defined energy in the extracted beam. 
Ignoring the effect of the flattop dees we find for 6H: 

B cosna A sinna 
2qV t = 6H=--- sinhacosh </>l: 

'IT n 
n 2 + coshasinh~~ . n 2 ~(19) 

n(n -1) n(n -1) 

This expression shows that the phase ~ of the particle 
changes during the acceleration when the Fourier coef
ficients An and Bn depend on radius. The phase shift 
can qe estimated from the equation of motion for ~: 

dr 
o 

where n is the turnnumber. 

a6H 
ar 

o 

'IT 6H' (20) 
E 

For a two-dee system with half dee angle a we have in 
good approximation 

E " 4qVn sinhacosh~ (21) 

If we assume that ~ is small, we may ign~re the second 
term in 6H which is proportional to sinh~. 
We then obtain for the pase shift: 

B' cosna 
~ - ¢ = -Hn(;/; )l: -'C

n-,, __ 
Don n(n2-1) 

( 22) 

The effect is also present in a 3-sector cyclotron with 
three dees. In this case we find the same expression 
for the phase shift as given in eq. (22). For the ILEC 
cyclotron Bn=O and therefore the effect is not so impor
tant. However, for a cyclotron with spiral pole tips 
and high mode number of acceleration h the effect may 
become noticeable. 

Conc l uding remarks 

The model derived in this paper has not the aim to 
replace numerical calculations. Numerical calculations 
have always to be carried out when accurate results are 
needed or when the electric and magnetic fields are 
strongly nonlinear as may be the case in the central 
region and the extraction region. The model can be 
helpful, however, as a means to check numerical calcu
lations and as a guide for understanding special 
effects as well as for finding corrections for unwanted 
numerically or experimentally observed pertubations. 
Moreover, the model can be used as a powerful tool to 
evaluate general properties of the azimuthally varying 
magnetic field and the acceleration structure and to 
investigate the coupling effects arising from a given 
combination of magnetic field symmetry and geometrical 
structure of the dees. 
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