AN ANALYTICAL METHOD TO DETERMINE THE GEOMETRY OF THE SECTORS.

Zafar Ahmed and R.C. Sethi
Nuclear Physics Division,
Bhabha Atomic Research Centre, Bombay 400 085, India.

1. Introduction

For the calculations of averege field and flutter, NEU and WERNER ${ }^{1}$) have used conformal trensformations to set up emperical formulae. When velley gap is twice the hill gap, it was interesting to observe a very exact analysis. The present method is besed on the same idea end gives rise to a cubic euqation, from which the expression
for $B_{z}(r, \theta)$ has been obtained. This, in turn, gives rise to subsequent expressions for determining the design parameters, $\langle B\rangle$, $F, \nu), \nu z$ and sector geometry. The parameters thus computed have been compared with those obtained from emperically establisked formulae. Moreover, the fringing field effects due to outer edge have also been incorporated. The analysis and the results are presented here in the following sections.

2. The Procedure

The method $1 s$ based on the assumption that the permeability of the iron is infinite. Hence the geometrical surface of the pole serves as equipotential surface. The scaler magnetostatic potential V, satisfies the Leplace equation.
$\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0$
Along constant r and constant θ this equation cen be separated in two, 2-dimensional equations.

$$
\begin{align*}
& \frac{\partial^{2} v}{\partial s^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0, s=r \theta \tag{1}\\
& \frac{\partial^{2} v}{\partial r^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0, r \rightarrow \infty
\end{align*}
$$

Equation (1) can be rewritten as

$$
\frac{\partial v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0, \quad \begin{align*}
& x=s \tag{3}\\
& y=z
\end{align*}
$$

Along a radius, the pole contour from the middle of the hill to the middle of immediate valley has been picturised in figure 1. Then through two conformal transformations ${ }^{2-5 \text {) }}$ the 2D-Laplace equation are solved to analyse the potential and hence the fields. We get the conformal transformations as follows,
$\frac{d z}{d \omega}=\frac{A_{1}}{(\omega-0)(w-1)^{-1 / 2}(\omega-a)^{1 / 2}}$
$\frac{d x}{d \omega}=\frac{B_{1}}{\omega}$
$X=\frac{i V_{0}}{\pi} \log w+V_{0}$

$z=x+i y$

Fig. 1: Transformetions in different planes.
where g is the hill gep, h is the valley gap $H=h / g, A 1=-g / 2 \pi, a=\frac{1}{H^{2}}, B 1=\frac{i V_{0}}{\pi}$
By introducine
$Q=\left(\frac{w-1}{\omega-a}\right)^{1 / 2}$
we find the verticel component of field in the median plane,
$B y(x, y=0)=|d X / d z|$
$B y(x, y=0)=B o / Q$
where Bo is maximum hill filed given by
$B_{0}=\frac{2 V_{O}}{g}$.
For median plane we
set up,
$\frac{2 x}{g}+i \cdot 0=\frac{H}{\pi} \log \frac{H+Q}{H-Q}-\frac{1}{\pi} \log \frac{Q+1}{Q-1}$ \qquad
where $1<\mathrm{Q}<\mathrm{H}$

For $H=2$, equation (4) gives rise to a cubic equation.
$B^{3}-\frac{3}{4} B_{0}^{2} B+\operatorname{Tanh}\left(\frac{\pi r \theta}{g}\right) \frac{B_{0}^{3}}{4}=0$
where $B_{z}(r, \theta, z=0)=B y(x, y=0)=B$
of which the following is the physically acceptable solution.
$B_{z}(r, \theta)=-B_{0}\left[\operatorname{Cos}\left(\frac{1}{3} \operatorname{Cos}^{-1}\left(\operatorname{Tanh} \frac{\pi r \theta}{g}\right)+2 \pi / 3\right)\right] \cdots(5)$

Equation (5) would determine the azimuthal field variation, for $H=2$ machines, from middle of the hill to the middle of the immediate velley.

3. Cyclotron Parameters

All the design parameters of the sector megnet viz. $\langle B\rangle, F, \nu_{z}, \nu_{r}, k(r)$ etc. can analytically be obtaine from equatic 1 (5).
(a) Average Magnetic Field: The integration of equation (5) yields as given below.
$\langle B\rangle=\frac{3 g B_{0}}{2 \pi^{2} r}\left[\log \left(4 \sin ^{2} x_{2}-3 \sin ^{2} x_{2} \operatorname{cosec}^{2} x 1\right)\right.$ $\left.-\log \left(4 \sin ^{2} x_{2}-3\right)\right]$
where
$x i=\frac{1}{3} \cos ^{-1}\left(\operatorname{Tanh}\left(\frac{\pi r \theta i}{g}\right)\right)+2 \pi / 3$,
$\theta_{1}=\theta_{H}, \theta_{2}=\frac{\pi}{N}+\theta_{H}, i=1,2$.
θ_{H} is the half angular width of sectors, N is the number of sectors.
(b) Flutter: The exact formulae for flutter car be had as follcws.
$F(r)=\frac{\left\langle B_{z}^{2}(r, \theta)\right\rangle}{\left\langle B_{z}(r, \theta)\right\rangle^{2}}-1$.
$\left\langle B_{z^{2}}{ }^{2}(r, \theta)\right\rangle=\frac{9 B^{2} \circ g}{\pi^{2} r}\left[\frac{-1}{4} \log \frac{\operatorname{Tan} x 2 / 2}{\operatorname{Tan} x 1 / 2}-\frac{1}{12} *\right.$

$$
\left.\log \frac{\operatorname{Tan} 3 x_{2 / 2}}{\operatorname{Tan} 3 x_{1 / 2}}\right] \cdots \cdots-\cdots(7)
$$

(c) Sector Geometry: Conversely, the desired width of sectors for the given field profile can also be calculated by solving the equation (6). This equation for the desired $\langle B\rangle$ profile would reflect the implicit dependence of $|\theta H|$ over r. Newton Bisection method has been omployed to solve the equation. The contours of the sectors can be obtaine \dot{a} for any desired $\xi_{\rho}(y)$, spiral angle variation,
$\operatorname{Tan} \xi_{1}(r)=\operatorname{Tan} \xi_{0}(r)-\left|\theta_{H}\right|$
$\operatorname{Tan} \xi_{2}(r)=\operatorname{Tan} \xi_{0}(r)+\left|\theta_{H}\right|$
where $\xi_{0}(r)$ is chosen for the required $\nu_{z}(r)$.

> 4. Fringing Field Effects

So far, the analysis has assumed that the radii of the sectors are infinite in extent. The finiteness of the dimensions of the sectors modifies the field in the outer region. Fipure 2 represents the pole shape of the outer edge. The resultant trensformetions for this can be written as
$z=\frac{g}{\pi}\left[\sqrt{\omega+1}-\frac{1}{2} \log \frac{\left[(\omega+1)^{1 / 2}+1\right]^{2}}{\omega}\right]$
$X=-\frac{i V_{0}}{\pi} \log \omega$

$$
X=v+i u
$$

Fig.2: Transformations for outer ooundary.

These transformations subsequently give
$f_{H}(r)=\operatorname{Tan} h\left[\frac{1}{f_{H}(r)}-\frac{\pi(r-r o)}{g}\right] \ldots(8)$
where ro is the max. cyclotron radius,
$f_{H}(r)$ is dimensionsless factor accounting for field fringing in hill region at the outer edge. In equation (8), if g is replaced by h, we obtain $f v(r)$, the field fringing factor for Valley. This implicit equation has been solved by NEWTON BISECTION method. The field distribution function of equation
(5) gets modified as;
$B_{z}(r, \theta)=-f(r)\left[\cos \left(\frac{1}{3} \cos ^{-1}\left(\operatorname{Tanh} \frac{\pi r \theta}{g}\right)+\frac{2 \pi}{3}\right)\right] B_{0}-(9)$ where
$f(r)=\begin{aligned} & f_{H}(r) \\ & f_{Y}(r)\end{aligned} \quad f_{01} \quad \theta_{0} \leqslant \theta \leqslant \theta \leqslant \theta_{1}$
The modified expression for average field would be written as;

$$
\begin{align*}
\langle B\rangle= & \frac{3 g B_{0}}{2 \pi^{2} r}\left[f _ { H } (r) \left[\log \left(4 \sin ^{2} x_{0}-3 \sin ^{2} x_{0} \operatorname{cosec}^{2} x 1\right)\right.\right. \\
& \left.-\log \left(4 \sin ^{2} x_{0}-3\right)\right]+f_{V}(r)\left[\operatorname { l o g } \left(4 \sin ^{2} x^{2}\right.\right. \\
& \left.\left.-3 \sin ^{2} x 2 \operatorname{cosec}^{2} x 0\right)-\log \left(4 \sin ^{2} x_{21-3)}\right]\right] \ldots \tag{10}
\end{align*}
$$

where
$x i=\frac{1}{3} \cos ^{-1}\left(\operatorname{Tanh} \frac{\pi r \theta i}{g}\right)+2 \pi / 3$,
$\theta_{0}=0, \theta_{1}=\theta_{H}, \theta_{2}=\pi / N+\theta_{H}, i=0,1,2$.
Similarly the $f_{H}(r)$ and $f_{V}(r)$ factors would modify flutter also.

5. Comparison

The emperical formulae derived by NEU and WERNER for the case $H=2$, are quoted

$$
\begin{align*}
& \langle B\rangle=\frac{B_{o}}{2}\left[1+\left(\sigma+.2291 \frac{g}{r}\right)\right], F=f^{2} / 2 \\
& f=\frac{1}{(1+\delta)}\left[2 \delta(1-\delta)-.4297 \frac{g}{r}\right]^{1 / 2} \ldots . . . \\
& \delta=\sigma+.2387 \frac{g}{r}, \sigma=3\left|\theta_{H}\right| / \pi \tag{11}
\end{align*}
$$

Proceedings of the Eleventh International Conference on Cyclotrons and their Applications, Tokyo, Japan

According to these authors these formulae are valid for $r>15 g / 2 \pi$. For the chosen geometry, $\langle B\rangle, F$ have been calculated by using equatíon (12). The figure 3 displays these results by dotted lines. And the results based on our method, are represented by solid lines. Both the results should be compared after 38 cm radius. The maximum deviations have been found to be less than 1% 。

Fig. 3: Comperison of results.

6. Application

This method has been used to design the sector geometry for the Medical Cyclotron Facility 6). The configuration of sectors has been optimised in such a way that it meets the requirements of 30 MeV proton, 7.5 MeV deuteron and 15 MeV alpha particles, by exerting minimum load on the trim coils. Figure 4 shows the requirements of field profiles.

Fig.4: Magnetic field profiles.
The field profile represented by the middle curve has been chosen as the optimum curve for the design of the sectors. Figure 5 shows the computed profile of these sectors
and in figure 6 is shown the plots of $B(r, \theta)$ for various radii, for the above mentioned geometry.

Fig. 5: The sector geometry for the medical cyclotron facility.

7. Acknowledgement

Authors would like to thank
Dr. S.S. Kapoor for his keen interest in the work and active support.

References

1. H. Neu and H. Werner, NIM 10(1961), 333.
2. Conformal Transformations in Electrical Engineering: W.J. Gibbs, London, Champon and Hall Itd., 1958.
3. "wo-Dimensional Fields in Electrical Engineering: I.V. Bewley, The Macmillian Company, New York, 1948.
4. Fields and Circuits in Electrical Machines: N. Kesaumurthy and R.E. Bedford. Thacker Spink \& Co. (1933) Pvt. Ita., Celcutta.
5. Design of Magnet for AVF cyclotrons. Zafar Ahmed and R.C. Sethi. Internal report, to be published.
6. Design atatus of the Medical Cyciotron Facility: Cyclotron team presented by R.C. Sethi, in these preecedings.
