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It is necessary to get eigensoiutions of Maxwell's 
equations in order to design resonators for accelera
tors. The nume rical computation of the solution, howe
ver, is very di ffi cult especially in the arbi trary 
three-dimensional case. We have developed special fi -
nite element models with "exotic" nodal configurations 
for two and three dimensional elements. In these mo
dels, tangential component of electric field at each 
side of each element is taken as unknown variable and 
is constant on the side and continuous along the 
interelement boundaries. In this paper some mixed 
fini te el ement models are presented with numed cal 
results for two and three dimensional prob lems. 
Satisfactory results are obtained for simple problems . 

L _ INTRODUCTION 

In the design of accelerators, resonator design is 
one of the most important part and it is necessary to 
calculate electromagnetic fields in cavities. In the 
design of cyclotron r esonators, we usually use trans-
mission line approximation which is basically one dime
nsional approximation and is inappropl'iate to get field 
distribution along dee gap . With the progress of compu-
ters, many numerical calculation codes have been deve
loped to get rf characteristics of resonators . Most of 
these treat resonators of constant cross section or axi 

symmetric modes l Recently Weiland has developed a 
thl'ee dimensional calculat ion code which is based on 
the finite difference method and uses only rectangular 

2 parallelepiped control volumes. We have developed a 
true three dimensional calculation code which is based 
on the finite element method. In this model, we can use 
a rectangular parallelepiped element but also a 
trigonal prism element and a tetrahedral element. Then 
it is easier to apply to resonators of arbitrary shape 
and also t.o impose boundary conditions . In this paper 
we present the model and some calculation examples, 

We deal with a t i me--harmonic electric field in 
vacuum of bounded r egion s urrounded by a perfect 
conductor. It is described by Maxwell's equations which 
are reduced to 

div E = 0, 
rot rot E = A.E, 

where A. = Cal 2/ c 2 . 
Boundary condition is 

(1 ) 
(2) 

nxE = 0 on the surface, (3) 
where n is a unit vector normal to the surface. 
In eq.(2), 
for A"'O 

A = 0 
div E = 1/ A dive rot rot E ) = 0, 
rot E = 0 but not div E = O. 

We must treat an eigenvalue problem for a real 
vector-valued function. A difficulty of this problem is 

in dealing wi th divergence- free condi t.i.on ( 1). 

3, NEW TYPE OF' FINITE ELEMENT MOPJtI;.~ 

'l We have already tested a penalty method', The met --
hod was successful for very simple shape resonators, 
but not fully successful for complex shape , We propose 
here new types of finite element models which satisfl es 
divergence free condition (1 ) . These models have quite 
different node configurations from usual fird te element 
ones because unknown variables are taken not on nodal 
points but on the si des of the element. We call lhi s 
models as exotic models. These types of finite element 

models are not so new4 , and it can be seen as the 

extension of the Weiland's model~. 
Detailed formulation of this model is presented i n 

ref. 5 and here we only summarize the resu Us, In that 
paper weak formulations :for Maxwell's equations are 
presented which are based on the mixed and penalty 
methods. Mixed formulation is based on the Lagrange 
multiplier. 

Characteristics of th:is model are as follows ; 
(1) Tangential components of the electric field on the 

sides of the element are adopted as unknown variables, 
which are constant on the sides. 

(2 ) Divergence- free condition is fully saUsfied in 
each element, 

(3) Electric field is not strictly continuous, but 
only tangential component is continuous along the 
interelement boundaries. 

(4 ) The handling of boundary cond i bon is easy. 

( 5 ) Only five types of element.s are in practical use. 

In Fig , l, five types of mixed finite element 
models wi th exot ic nodal con fi gurat ions are shown. In 
these elements, triangular element for two dimensional 
and axisymmetric case and tetrahedral e lement for three 
dimens ional case are important for pract i_cal use. 

NODES [ :: 
SIDES 

VERTICES 

-2-DIMENSIONAL - - 3- DJMENSIONAL--~ 
Fig. 1. Types of exotic element models . 

Only these five types can be used for our new types 
of finite element models. 

Upper and lower rows show the sides and nodes of the 
elements, respectively. 
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Tn f i ni te e l eme nt mod(d of two di.mensional case, we 
t a ke the followi.ng approximation of E in an e lement: 
( 1 ) linear polynomi a l approximati on. 
( L ) ro1 E ." cons t a nt. 
( :3 ) di v E O. 
(ll ) Tan l( ',nti a] componen1 i s constant on e ach side of 
the e l eme ut. 

writt e n as 

E 
y 

J n 1 hest> e qns ., the coe [ '1' i c i ent of y in Ex and that 

o f X ill E have the s ame absolute va lue and opposit e 
y 

;, :igm: wh i vh c()mes from above c omb li.on ( 4 ) . 

Then rot E 
BE BE _y __ x 

-2a 2' 
Bx By 

BE BE 
and div E = _x+ -y= O. 

Bx By 
In th is (> I eme nt model, s ha pe fun c t i ons are g i ven a!'. 

fo l l ows : 

:l J i ( Y y . ) 

E l; 
. 1 

E S .• 
x 

J ~A 
s ,1 +:3 1 

I · 

:3 1. ( x-- x . ) 
E L: 

] 1 
E Si' Y i"l '.!.A 

s , i f ~~ 

whe r e s indi ca t es side o f i+:3 in I<' :if(. 2, and Si 
indi,;" t e s tile s i gn o f i s ide length. · 

3 

1 6 
2 

f"lg. 2. Triangular e lement 
Fi gures l to 3 indicate 

nodal po ints and 4 to Ei 
indicat e s ides. Tangential 
c omponent of' el ectric fi e ld 
on each side is constant On 
it and c ontinuous but norma] 
c ompone nt is not continuous 
a t the interface of 
e lements. 

From th is expressj ons, 
e l e ment mass matri x M 

m 

e 1 eme nt s t i f'fness matri x M 
s at-e 

and 

M 
s 

M 
m 

l / A [ l i l}jS j J 

1/ 4A2 lSi S}i Ij ff { ( x--x i ) ( x- x j ) 

+ ( y_.y i ) ( y--y j )} dxdy 

, * * * * = l / A[SiSjlilj (xi Xj +Yj Yj 

1/ 6( * * * * * * - Xl x 2 +x2 x 3 +x3 Xl 

* * * * * * +Y l YZ +yz Y3 + Y:~ YI ) } ] , 

where A is the a t-ea of the element, Ii is the length of 

* s ide of 1+3 , Si i s the sign of the side length, and Xl 

~ X(-X
M 

with x
M 

be ing the c enter of gravity. 

Re gions of a rbitrary three dimens:ional shapes can 
be divided into t e trahedral elements with quite good 
approximation. In the s ame manne r as two dimensional 
triangular e l ement, t he foll ow ing c onditions a re 
r e quire d to thi s finit e e l ement model. 
( 1) line ar polynomial a pproximation. 
( L ) rot E = constant. 
(3) div E .0 O. 
(4 ) Tangential component s are cons tant on e Hc h side of 

the eleme nt. 

El ectric fi e ld 
writte n as 

E in this eleme nt 

E a l 
+ a 2Y + a 3z x 

E a 4 a 2x + a 5z Y 

II a 6 
- a 3x - a 5Y z 

BE BE 
Then (rot E) _z - --1= -2a 5 , 

x By Bz 

BE BE 
(rot E) _x __ z 

2a 3 • y Bz Bx 

BE BE 
(rot E) -y __ x 

-2a 2 z Bx By 

BE BE BE 
div E _x+ --1+ _z o . 

Bx By Bz 

Shape fun c tions in thi s model a r e writt e n as 
6 

E/ l /( 6V ) ~[i I ( zk (i) --zm(i » y+( ym ( i ) --yk ( i ) z 
l ' .1 

+ ( yk ( l )zm( i )-ym ( i ) Zk ( i )] EiS i ' 

6 
E 1/( 6V ) l;.I. [( x

k
( i ) x (i » ZI ( Z (i ) -z k ( i ») x 

Y i " ,11 m m 

+( Zk ( i ) zm ( i )-zm( i ) xk ( i l] EiS i ' 

6 
E =1/( 6V ) ~I . [ ( yk ( i ) - y ( i )) x+ ( x ( i ) - xk (l» y 

Z i ,., ,1l m m 

+ (xk ( i ) Ym( i ) - xm( i ) Yk ( i ) ] EiS i ' 

is 

where V is the volume, .I i is the side l e nl§th of i side, 

Ei i s the i s ide component of e l ectri c fi e ld and Si is 

the sign of i side length. As shown in Fi~. 3, i side 
indicates the circled i+4 side. Swnmation i indi c ates 
the i +4 side a nd m and k 'in that c ase are shown in Tab. 
1. 

Fig . 3 . Tetrahe dral El ement 

Table 1 

i k m 
1 (~ 3 4 
2 @ 4 2 
3 (7) z 3 
4 @ 1 4 
5 @ :~ I 
6 @l 1 2 

Nodal points are indicated with 1 to 4. Sides are 
indicated with 5 to 10 in ci rcl e . Tangential components 
on each side are c onstant and e lectric field at an 
arbitrary poi nt in the element is expressed with the 
linea r contribution of the tangential components o f all 
sides. 
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The element stiffness 
tetrahedral case are also 
procedure as the case of 
explicit expression is very 

and mass matrices for 
given through the S<1me 

two dimensional, but the 
complicate to write down. 

4.ASSEMBLAGE AND BOUNDARY CONDITIONS 

From the above procedure, element matrices arc 
given. Then according to the usual finite eLement 
procedure, alI the cl ement matrices are assembl ed to 
total mass and stiffness matrjces of the total matrix 
equation. 

Boundary condit.ions are imposed t.o the assembled 
matrices. For a metal surface, tangential components of 
elect.ric field are zero. So the corresponding row and 
column are elimi.nated. For a min'or sYllunetric plane, no 
special const raint condit. ions need be imposed since 
this case may be treated as natural boundary 
condi ti ons. 

In this way, we can get the matrix equation and we 
must solve the generalized eigenvalue equation. These 
t.otal mat.ri ces have many zero components and are usua.1 
ly very sparse. So usually some techniques are used to 
save computer memory. In this time we used skyline 

6 scheme for the Gauss elemination method . 

We made some cal.culations for several simpLe 
problems t.o check the v<ll:idity of our approach. 

I.Two dimensional probl e!!! 

We calcul<lted the field in a rectangular domain 
with a notch of depth a. Figure 4 (a) shows two types of 
meshes. We calculated the lowest eigenva.1ue using 
triangular element: . Using; synunetric properties of the 
fields, only an upper ha l f area is divided and 
calculated . Notch dependence(a) of the lowest eigenva
Lue is shown in Fig. 4(b) for IOxJ.OIl meshes . In this 
figure solid line indicates the results obtained with 

the conventional method!. The calculated eigenvaLues 
show good agreement wit.h convent.ional method and the 
eigenvalue dependence on a is consistent with the 
perturbation theory. Figure 4(c) shows the field 

3.0 

2x2A 2x26 A, 

W 1 
2.5 

2.0 

5x5A 5x56 
1.5 

rw 1.0 

0.4 

(a) 

Fig. 4(a). two dimensional mesh. 
Fig. 4(b). calculated eigenvalue. 

, EXOTIC (10xl0B) 

: CONVENTIONAL (14x14B) 

0.6 '0.8 1.0 1.2 1.4 1.6 1.8 

-Q 

(b) 

Notch depth dependence on eigenv,d ue is shown. The 
results show good agreement with the calculation with 
conventi onal finite element model. 

......... . . .. . . .. .. 
................. 

.. .. ~ ... .. ... ... ... <l 

................... .. - .................... . 

..................... - .......................... ... - - - ...................... ... - -- ........................ .... 
----- .............. ... ---_ ........................ ..... ------- .................... 
---..................... a=O.3 
--------......~ .... 
~ ......... " lOxl0A 

(c) (d) 

Fig. 'l(c). Electt'ic fields calculated at the center of 
mass of each triangular element.. 
Fig. 4(d) Electric fields in two tt'ianguJar elements at 
the edge indicated by the circle in Fig.4(c). 
In these figures, eigenvalue and eigenvec tors are eal 
eul ai-ed on the si des of .,J ements, and from these va .1 ues 
electric fields at arbitrary points are calcul<lted . 

distribution calculated at the center of mass of each 
triangular element. In Fi1.. ,1( d ) , the fi"ldin two 
triangular elemp-nts at the edge a['(~ shown. !:lars 
i ndicat,,,,, the magni tude and eli rec Lion of t' j edri c 
fieLds. Electric fields at element interfaces have 
di fferent values which depends on the e:tempn L. In Ud s 
model, only tangential components are continuous. By 
the same reason, the exact e l ectrjc fiplds shollid have 
no not'mal component on the synunetry plan!", but the 
calculat.ed ones have smal.l amount: as il is . This kind 
of error's are inherent in thi.s method. 

rirst we calcuLated a simpLe paralLelepiped cavity. 
Obt.ained results were quit" n~asonah]e. FigurE':' shows 
the convergence of eigenvalue for 3x4x~; size 
parallelepiped cavity. lJivision of mot'e than 4x4x!1 
"ives sufficient. convprgence for t.he eip,enva lue in t.his 
case. 

w 
::> .... 
..; 

1.0116 
1.01 

~ 1.00 
w 
Cl 
iii 

0.99 

T 

CONVERGENCE OF EIGENVALUE 

analytical value 

• • 
• 

• 

DIVISION 

Fig. 5. Convergence of eigenvalue with division N. 
For such a simple parallelpiped cavity, convergence 

is very fast. 
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Secondly, we 
cavity. Figure 6 
deformnti on x. 
consisls with the 
the volume when '! 
eigenvalue s hould 
:is shown ·in Fjg. 

calculated a deformed parallelepiped 
shows the lowest e i.genvalues with 

Thh; variati on of t.he eigenva] ue 
perturbation theory. That is, when 
electric field is st.rong is reduced, 
be reduced . Calculated elect ric field 
7 by vector plots . 

VARIATION OF EIGENVALUE 

AGAINST DEFORMATION 

0 

1.03 

0 
1 .02 

w 
::> 0 
..J 

"'" 
0 

> 1.01 
0 z 

w 
~ 0 
w 1.00 0 

.0 
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3 

0 . 98 
DIVISION 8X8X8 
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0 
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Fig. 6. Var:i ati on of eif(envalue <I )(ainst deformation 
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Fig. 7. Elec tric field 
distribution for deformed 
parallelpiped cavity. 
El ect.ric f.i.,.lds which are 
ca l culated at the center 
of mass of each t.riangle 
on z- sLiced pLanes are 
ind:icated. 

It i s well known that in three dimensional calcula
tiuns l arge, sizc of computer memory is L-equired. We 
have estimated the required si.ze. Figure 8 shows the 
required memory size vs division number N. This figure 

shows that the required memory has N5 dependence. It is 
because the skyline scheme is adopt.ed for the solver. 
When the division is N, the order of mat.rix is nearly 

3 proportional to N In the skyline scheme, bandwidth is 

2 near ly proportional to N. So required memory size is 

approximat.ely proport.ional to N5 . According to our mesh 
generator progl'am, maximum nonzero components of one 
column or row, is expect.ed t.o be 19 considering the 
symmetry of the matrix. So the minimum size of memory 

to s tore the matrix is about 19 X N3 , which line is also 
indicated in this figure. At present we are developing 
a compute r code based on some iteration methods whi ch 
can take advantage of this storage property. 
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Fig. 8. Required memory vs divjsion N. 
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