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ABSTRACT 

Accelerator beam is a nonlinear dynamic system, 
and the phase space transport of it means the variation of 
the phase space shape from the initial state .\"o = S(to) 
to the final state S,. = S(t). Mathematically, this vari
ation is the transform from the initial boundary equa
tion of phase space F(So) = 0 to the final equation 
F(So(S,.t)) = f(St , t) = O. This transform is non
linear. The any order analytical solution for the motion 
differential equation of a general nonlinear dynamic sys
tem has been derived out l , namely, the function relation 
S(t) = .\",(So, t) was given. Based on the result, the in
verse transform of the any order solution of the motion 
differential equation was completed in this paper, and 
the function relation S(to) = So(S" t) was obtained, 
thus realizing theoretically the nonlinear transport for 
the phase space of nonlinear dynamic system. 

1. INTRODUCTION 

With the development of modern science, more and 
more science areas have broken through the linear cat
egory and involved the studies of nonlinear category. 
The phase space transport of nonlinear dynamic sys
tems is a general nonlinear problem. At the initial state 
Xo = .\"(to), if the boundary equation of the phase space 
IS 

F(So) = 0 , (1) 

then, at the final state .\", = S(t), the boundary equa
tion of the phase space becomes 

F[So(X"t)) 
f(S"t) = 0 , 

(2) 
the process bet ween the initial phase space Eq.1 and 
the finial one Eq.2 is the very phase space transport of 

the nonlinear dynamic system considered. Mathemati
cally, this physical process is the nonlinear transforma
tion from the given initial Eq.1 to the finial Eq.2. For 
a general nonlinear dynamic system, reference 1) gives 
the phase point S(t) = [:t:}, :I:t , ··· ,:r:t' )'" = .\",(.\"o ,t) 
at the time t as the funtion of the initial phase point 
Xo = [:1:6, ;z: ~ , .. . , :r~!F" and the time t. So, our task is to 
find out its inverse transformation, i.e. the initial phase 
point S(to) = So(S, . t) as the funtion of the phase point 
.\",. and the time t. Then, substitution of the inverse 
transform S(to) = .\"o(S"t) into the initial Eq.1 yields 
directly the final state Eq.2. 

2. DERIVING THE INVERSE 
TRANSFORMATION OF 
S(t) = .\"t(Xo, t) 

In N-dimension phase space, the motion differential 
equation of a general nonlinear dynamic system is 

X i -
t- ni, (t)x{' + n:.l'h (t)x'{' ;I:i' 

+a i ... (t) :r]'x.1'x]3 
]1l']3 t t t 

+ ... 
+o.i.. . (t):,j,x.i, .. . :,)" 

.11.12 .. . J II. Itt, 

+ ... 
(3) 

where, i = 1, 2, ... , N, and the any order analytical 
solution l

) of the above equation with initial phase point 
.\"b is 

xi = Ti, (t ).7;b' + r.i,h (t ):r:b' xb' 
+ Ti,),} 3 (t )xb' :rb' :l:b3 

+ ... 
+Ti. . (t) .. .f, ",,;, '1)" 

,/1),,,.,111 "0'0" "0 

+". , 
(4) 
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Express the inverse transform of Eq.4 ill serIes: 

:1"0' 51 (f)"';' + 51 . (f)'ri'T i , 
J '1 " . , . ' 1 ~ ;3 . .' " " f 

or: 

"

j, 
, '0 

,,)3 
'0 

"
.I" 

, 0 

+ 51 (t)r" '1"''1''3 'i]i2i'J ,., "I "t 

+" , 
+51 . . (t):,.;' :ri, ,;1';" 

, ]'2 ... , /I I f 

+" , 

51" (f);/,i' + 51" (f):,.i, :,.i, 
'1 t ')'2 t t 

+ 5'·i " (f)".i",';",';3 +'" ;.1 ,. 2" J '. t . , .. , 

5,)" (t)"i, "i, "i" + ., " "', "" ""', '1
'

2 ",. It 

giving the fundamental terms: 

",./1 ",.I> 
'0'0 

5:: (t)5:: (f):I';' ;/:;, 
+{o5)' (f)8" . (f) '] '2' J 

+5/,'" (f)o5:: (f)};,.;, :,.;' :1';3 
+" , 
+{o5l' (f)8'2 . (f) 

. '1 ';2' J ."" n 

+5}1 (f)8" . (f) 
'1'2 'J' 4 .•• 1 11 

+" , 
+5'1 . (t)8i ' . (f) 

'1'2 ••. 1 11-2 'n_l 1 " 

+S::i2 ... i,,_, (f)S:~ (f)}:,.;':,.;' '" :,.;" 
+" , 
Chh (f).,.i, ",;, 

T; 1;.2 ,.,. '. . . 

+(·'II.I' (f).,"I,,"'o"3 T,. 1" '2 i J .,. I .f., 
+" , 
+CII.l' . (f):,.i""i", ,:,.;" 

'1' 2 ... 1 
YJ " 

+" , 

(5) 

(6) 

(7 - 1) 

oj, xi, xi> 
'''0 '0 0 

rb'rb' , .. :/'6" -1 :rb n 

= (.,.b' :rb' '" :1'6,,-1 ):"6" 
_ {C l1h ... .i,,-1 (t) "l."i, ",;,,_1 
- i t i 2 "';n_l .1" I .... " 

(7 - 2) 

+C.II.I, .. ,j"-'(f)·,,;,,,i, ,,;,, +., ,} 
". , , , , " .. , 

{ SI:,I(';)')'~ + S}" (f),,.i 1 :l'i, 
'1. '.'.1' '2 . ' f 

+8'" . (f):,.',I,,.,,,,/,;3 +'" 
'1'2' J 

+5.1" (f) ';, ,i 2 ,;" + ,,} i,i, ... i " ,I, ", '" " '. '. 

- C)J.12"'I"-'(f)8' " (f),"',." '/"" - ;]12 ... 1,,_1 in 'I""" t 

+." 
- 0' I.i>, .. } " (f)7'il .,.i, ... :,.,' " 
- ;1;2 ... in "1' I 

+ ... 
(7 - 3) 

where, the coefficients O::::::,t" (f) with m < 11 are of the 
following form: 

O:;:: ... i" (f) Sf,
1 (f)5/;i3' ,i" (I) 

+8'1 (f)o5" . (f) + 
'] '2 'J' 4·,·' 'I 

+811 
. (f)5" . (t) 

'I '2·'" ,,- 2 '/1_ 1 , It 

+5)1 . (t)5)'(t) 
'1 '2··,1" -I '/I 

CIt .l2,i, (t) 
'1':2 ... , II 

C It12 . (f)SI3(t) 
']' 2 ... 1 n -1 '" 

+C/J.1'· (t)SI3 (t) + 
'1' 2 ... 1 /1 - 2 ',I _lin 

+CltJ'(t)S)3 . (t) 
'1' 2 'J'4 •.• 1 II 

0
'

1.1' ... 1,,-, (t) 
, l' '2 ••• '" 

CI J.1, ... I,,-, (t)5' ''-' (t) , l' '2 ••• 1" - 1 1 n 

+ Gill' .. ') " - , (t) 51" - 1 (t) 
'1'2 ... 1/1 -:2 I" _ J '11 

CIl/' .. ln-1 (t)o5l .. (t) 
'112 ... 1 n - 1 I" 

(8) 
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Substitution of Eqs. 7-1, Eq. 7-2 and Eq. 7-3 into Eq. 4 gives 

(9) 
Combination and comparision of the coefficients in Eq.9 
yield the following coefficient equations: 

Ti, (t)S:: (I) 
yi (t)S'l (t) + Ti . (t)G' I/2(t) 

.J 1 , )12 .11.1:2 , )l2 

~i, 
o 

o 

(J 0) 
which, in turn, yield the coefficients of the inverse trans
form Eq.5: 

S!,(t) = [T-l(l)li~!, 
s' . (t) = _[T-l(t)]'Ti . (t)G.lI.l'(t) 

, 1':2 , .J 1.12 '1 r:;} 

(ll ) 
Arranging above equation with Eq.8, obtain the 

coefficients of Eq.5 as the following formulae: 

S' . (t) 
'1' :2 

Sf, (t) = [T-1(t)]f, 

-[T-1(t)]! 
T' . (t)SI' (t)SI2 (t) 

.11):2 'I ':2 

-[T-1(t)]! . 
{2Ti . (t)S" (t)SI2 (I) 

.J 1}2 , 1 . '2' J 

+Ti .. (t)S" (f)S'2 (t)SIJ (t)} 
.1 t.12.13 '1 ':2 1 J 

(12 - 1) 

(12 - 2) 

(12 - 3) 

SI (t) 
r 1'213"& 

= ~[T-l(tn: {2TJU,(t) 
[Sll (t)SI' . (t) + 1 Sii (t)S12 (t)] 

, 1 ''2' J' -I 2 . ' l' '2 . ' J' 4 

+3T' .. (t)S'l (t)S" (t)SIJ. (I) 
. .11.7 2./ J , l ,~ ,:), 4 . 

+T' ... (f)SII (t)S" (t)SlJ (f)S" (t)} 
.1 1.1 2.J J.J 4 I) , 2 'J '4 

(12- 4) 

SJ .... (t) -
Ill:z'J l 4'5 -

- [T- 1 (t)]! {2TJIJ2 (t) 
[Sll (t)Si2 .. (t) + S'l (t)SI2 . (t)] 

'1 12'3'4'5 '1'2. 13;4'5 

+3Ti . (t)[SI' (t)SI2 (t)SIJ . (t) 
.}l}l.1J '1. '2 '3'4'0 

+SI' (t)SI2 (f)S'J (t)] 
'} '2' J . '4'5 

+4Ti ... (t)S'l (t)S'2 (t)SIJ (t)S" (t) 
.J1l2}3.14 It '2 1:, '4't; 

+T' .. . (t)S'l (t)S'2 (t)S'J (t) 
.11.l2.lJ)4.J5 '1 '2 13 

S:;(f)S:;(t)} 
(12- 5) 

Carrying out the recursive process, the coeffi
cients in the inverse transform Eq.5 are finally expressed 
in terms of those in the system solution Eq.4: 

(13-1) 

SI . (t) 
'1' :2 

-[T-1(tn: 
T' . (t)[T-l(t)].1' [T-l(t)]'2 

.11.J 2 , 1 ''2 
(13 - 2) 

(13 - 3) 

(13 - 4) 
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3. 

s' .... (t) = -[T- 1(t)J.I '1' 2' J' 4' n l 

{-2T . (t){[T-1(tHi' [T- 1(t)]',' 
) I.J:2 1 r:2 

{-2T',~, (t)[[T- 1un:; [T-1(tn'~ 
.11.12 :;! ':3 

(-2T,'?,., (t)[T- 1(t)J:'; [T-1(t)]~;, 
, 1 ''2 :3 4 

T;'~/;, (t)[T-1(t)]~4; [T-1(t)J~,; 
+ T,;; ~I2/;2) (t )[T-1 (t) ]~)' [T- 1 (t )J~.: [T- 1 (t )J;:,») 

+ ~ [T- 1 (t H:,; T;~ /;' (t )[T-1 (t )J~·2; [T- 1 (t )J~: 
I '2 ./ 1 '2 I , 

[T- 1 (t H': T' f, (t )[T- 1 (t)J'" [T- 1 (t)J/;2J 
, 4 kIf.. '2 '4 'ti 

-3T'~ ,,(t)[T-1(t)1'; [T- 1(t)l';[T- 1(t)],,; 
.l 1 .1 2}3 '2 '3 '4 

T~i: ", (t )[T- 1 (t )J;-,' [T- 1 (t) J:'52 

+T'~" ,(t)[T-1(tn:; [T-1(tH:~ 
.11.12.1 J.I 4 

[T- 1 (f) 1: ~ [T- 1 (t) 1:: } 
+ [T- 1 (t)]:~ T:(;, (t )[T-1 (t n:: [T- 1 (t n:: 

..2, ./ ./ 
[T- 1 (t )l'n - 2T';' , (t )[T-1 (t )]h [T- 1 (f)]',' 

1'J .J 1.12 ''J '4 

Ti~. (f)[T- 1(t)J'" [T- 1 (t)J/;2 
J, 1/' '2 '4 't> 

+ T',~" (t )[T- 1 (t)l'; [T- 1 (t H'; [T- 1 (t ni;]) 
.J t .1 2 )J . '3 '4 'f> 

-3T:"21) (t){ [T- 1 (t Hi: [T- 1 (t Hi~ [T- 1 (t H:~ 

[- 2T'~, (t )[T-1 (t)l:; [T- 1 (t W,; 
.7 1}:2 3 , 4 

T~:: "'2 (t )[T- 1 (t) t.' [T- 1 (t)] :': 
+ T;[,;,; (f )[T-1 (t)]:~ [T- 1 (t H:: [T- 1 (t n::] 

+[T- 1 (t)]!: [T- 1(t)]:7:;}; (t) 
[T-1(tH:~ [T-1(t)]:~ 

[T- 1 (t )1';' Ti,~, (t )[T- 1 (t)l'; [T- 1 (t H';} 
'4 .J 1.J:2 '4 '5 

-4T . (t)[T- 1(t)JI'[T- 1(t)JI2[T- 1(f)J}) 
.11)2.13.14 11 '2 13 

[T- 1 (t)]:~ T;:,; (t)[T-1 (t H:: [T- 1 (t H:: 
+Ti ... (t)[T-1(t)]./J [T-1(t)].I2[T-1(t)]') 

.Jl.l2.13}4.1r.. '1 '2 13 

[T- 1 (tHi: [T- 1 (t)]!:} 
(13 - 5) 

NONLINEAR TRANSPORT FOR THE 
PHASE SPACE OF DYNAMIC SYSTEMS 

Substitution of the inverse transform Eq.5 into the 
boundary Eq.1 at the initial state -\0 = _\(fo) to get 
the boundary Eq.2 at the final state _\( = _\(f) com
pletes theoretically the nonlinear transport for the phase 
space of a general nonlinear dynamic system. As both 
the system solution Eq.4 _\(t) = _\((So.f) and its in
verse transform Eq.5 _\(to) = -\o(S" t) are nonlinear, 
the phase space transport of a general nonlinear dynamic 
system is a nonlinear process. 

As a typical example, in accelerator, the nonlin
ear beam phase space transport reveals essential differ
ences from the traditional linear beam phase space trans-

port. In Hamiltonian linear transport system, if the ini
tial boundary equation of the accelerator beam phase 
space is an elli pse 2

): 

\ -1' -1 \- 1 
- 0 (To - 0 = ( 11) 

then, it evolves through any time still to an ellipse with 
its area unchanged: 

(15) 

where, 10"(1 = 10"01· 

But in Hamiltonian nonlinear transport system, the 
substitution of Eq.5 into Eq.14 gives a equation with in
finite number of power terms, showing that the beam 
phase space boundary is sophistically distorted but still 
with its volume conserved through Hamiltonian nonlin
ear transport system. 

4. DISCUSSION 

Based on the above developed theory, an expert sys
tem can be implemented on IBM 286 to output automat
ically the analytical expressions of any order coefficients 
of the inverse transform Eq.5 for a general dynamic sys
tem Eq.(3), as well as the numerical formulation of any 
order coeffients of the inverse transform Eq.5 for a con
crete given nonlinear dynamic system. Finally the expert 
system demonstrates the evolution process of the phase 
space boundary from a given initial state to the final 
state at any time through a given Hamiltonian nonlinear 
transport system. All these works will be published in 
other articles. 
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