CROSSING OF RESONANCES

L.A. Sarkisyan and A.L. Sarkisyan
Moscow Institute-Internate, 107150, Moscow, Russia

Abstract

The equations for particle motion in accelerators are considered, taking into account energy gain per turn, for the investigation of integer and half-integer resonance crossing. Formulas are presented estimating amplitude behaviour when crossing resonances.

A correct analysis of integer resonance crossing in cyclotron or synchrotron accelerators leads to equations for the radial and vertical oscillations of the form ${ }^{1,2)}$

$$
\begin{align*}
& r^{\prime \prime}+Q_{r}^{2} r+\frac{\gamma e V}{\bar{H} \sqrt{\gamma^{2}-1}} r^{\prime}=-R \epsilon_{z s} \sin S \psi, \\
& z^{\prime \prime}+Q_{z}^{2} z+\frac{\gamma e V}{\bar{H} \sqrt{\gamma^{2}-1}} z^{\prime}=-R \epsilon_{r s} \sin S \psi, \tag{1}
\end{align*}
$$

where r and z - radial and vertical coordinates of the particle, $r^{\prime}=d r / d \psi, z^{\prime}=d z / d \psi, \psi$-azimuthal coordinate, γ - relativistic factor, eV - energy gain per turn, \bar{H} - the mean magnetic field at radius $R, \epsilon_{z s}, \epsilon_{r s}$ - relative values of the $S^{\text {th }}$ harmonic vertical and radial magnetic field components respectively.

In contrast to the shortened equations, equations (1) have a term of the form $\delta=\gamma e V /\left[\bar{H} \sqrt{\gamma^{2}-1}\right]$, which is a friction term ("electromagnetic" friction) and is caused by energy gain per turn in explicit form. ${ }^{1,2)}$

The amplitudes of the oscillations excited when crossing the integer resonance are of the form ${ }^{1,2}$)

$$
\begin{equation*}
r, z=\frac{R \epsilon_{z, r, s}}{\sqrt{\left(Q_{r, z}^{2}-S^{2}\right)^{2}+\delta^{2} Q_{r, z}^{2}}} \tag{2}
\end{equation*}
$$

In the case of a half-integer resonance crossing the equations for radial and vertical oscillations are of the form ${ }^{1,2}$)

$$
\begin{align*}
& r^{\prime \prime}+Q_{r}^{2} r+\delta r^{\prime}=-r_{o} \epsilon_{z s} \sin S \psi \\
& z^{\prime \prime}+Q_{z}^{2} z+\delta z^{\prime}=-z_{o} \epsilon_{r s} \sin S \psi \tag{3}
\end{align*}
$$

where r_{o} and z_{o} are the initial radial and vertical coordinates.

Insofar as the half-integer resonance is far less hazardous than the integer one, shortened equations without the friction term can be used to calculate to a first approximation. In this case the maximum value of the amplitude excited in the half-integer resonance zone is approximately in explicit form ${ }^{1,2)}$

$$
\begin{gather*}
y \approx 1.2 y_{o} \frac{\pi H_{s}}{\bar{H}_{s}}\left(\frac{E_{o}}{2 e V}\right)^{1 / 2}, \\
y=r, z \tag{4}
\end{gather*}
$$

where $H_{s}=H_{z s}$ is the amplitude of the $S^{\text {th }}$ harmonic of the vertical magnetic field component in the case of radial movement and $H_{s}=H_{r s}$ is the amplitude of the $S^{\text {th }}$ harmonic of the radial magnetic field component in the case of vertical movement; E_{o} is the particle rest energy.

Knowledge of the particle resonance crossing mechanism allows the particle energy in cyclotrons to be increased above E_{o}, the integer resonance to be used as the basis for resonant beam extraction, and the injected beam intensity to be increased. ${ }^{3)}$

REFERENCES

1) L.A. Sarkisyan, The Relativistic Cyclotron (Moscow University Press, Moscow, 1990).
2) L.A. Sarkisyan and A.L. Sarkisyan, Nonstationary Forced Oscillations (Chuvash University Press, Cheboksari, 1991).
3) L.A. Sarkisyan and A.L. Sarkisyan, "Increase of Beam Intensity", these proceedings.
