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ABSTRACT 

The widely used program RELAX3D, in continual 
development at TRIUMF since its inception in 1973,1) 
employs the finite-difference algorithm known as sym
metric successive over-relaxation (SSOR) to solve the 
three-dimensional second-order elliptic partial differen
tial equation V' 2V(x, y, z) = F(x, y, z), which includes 
the Laplace (F == 0) and Poisson (F # 0) equations. 
After a brief review of other solution techniques, the 
program is described and a variety of sample usages is 
given. Recent enhancements were made in the use of 
various grid stencils (molecules), graphics facilities, and 
portability to UNIX systems. The dependence of errors 
on grid spacing, stencils, and machine precision are pre
sented. The investigation of higher-order relaxation for
mulae (stencils) has shown promising results. Using a 
27-point stencil, the solution accuracy can be dramati
cally improved with only a modest increase in execution 
time. 

1. INTRODUCTION 

The solution of Laplace's equation has been pro
vided in the past by a variety of techniques2 ,3) such 
as curvilinear squares, resistor networks, conducting pa
per, electrolytic tank, magnetic analog, separation of 
variables, conformal transformation, and a wide vari
ety of numerical methods (especially finite-difference and 
finite-element techniques). Some of these techniques are 
applicable also to Poisson's equation. These equations 
arise in steady state electric fields, heat flow, laminar 
flow in fluids, and certain magnetic field problems. 

RELAX3D4- 7 ) solves for the potential V on a reg
ular grid, approximating the differential equation by a 
finite-difference equation, defined for each grid point in 
terms of its neighbours. This set of equations is solved 
using the iterative method of successive over-relaxation. 
Boundary potentials of arbitrary shape, and the ar
bitrary function F (representing charge density, heat 
sources, etc.) are supplied by a user-coded subroutine. 
Various other options and features are provided, mak-

ing the program convenient, flexible, and easy to use. 
Table 1 shows the current scope of the program. 

Table 1. Problem types solved by RELAX3D 

PROBLEM TYPE I DIMENSION I COORDINATES 

Laplace and 2D Cartesian 
Poisson Equation 3D Cartesian 

2D Polar 
2D' Cylindrical 
3D Cylindrical 

Laplace Equation 2D Cartesian 
(multi-dielectric) 2D' Cylindrical 

• Assumes cylmdrIcal symmetry. 

2. RELAXATION ALGORITHM 

Once the initial values of F and the boundary values 
have been specified, RELAX3D performs the relaxation 
algorithm (SSOR) in which the potential Vo at the cen
ter of the N-point stencil (molecule) is discarded, and re
placed by an appropriately weighted average Vo' of N -1 
neighbouring potentials Vijk according to 

h 2 

Vo ---;. Vo +w(Vo' - 6Fo - Vo), (1) 

where Fo is the value of the function F at the center 
of the stencil, and w is the relaxation factor. 3 ,8) Each 
problem type in Table 1 has a different formula, each of 
which has been derived individually from Taylor series 
expansions.3 ,7,8) For example, for the 3D Cartesian 7-
point stencil shown in Fig. l(a) we have 

11,* - '" Vijk 
o - ~ 6 ' (2) 

d=h 

which is simply the average of the potential at the six 
nearest neighbours to the central point of the stencil, all 
of which are at a distance h from the central point. 

The relaxation subroutine sweeps the entire grid in 
this manner until the residuals (changes in the poten
tials) are within a user-specified tolerance, typically 1 
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Fig. 1. Three dimensional shapes for (a) 7-point 
stencil and (b) 27-point stencil. 

part in 106 or 107. The values stored in the 3D arrays 
for V and F are addressed using an efficient addressing 
technique,I,7) without the use of compiler-based 3D ad
dressing. This I-dimensional addressing technique needs 
only one addition per address, and detailed tests have 
shown that the program execution is considerably faster 
than with the standard " (1, J ,K)" technique, although 
recent FORTRAN compilers are closing the gap. 

3. RELAX3D APPLICATIONS 

Center regions of cyclotrons,1,9,10) cyclotron mag
netsll ) and racetrack microtrons for free-electron 
lasers l2

) have been designed with the aid of RELAX3D 
solutions. Cyclotron infiectors, detectors, cyclotron RF 
systems, Einzellenses, electric and magnetic quadrupole 
lenses, corona rings, coaxial transmission line termina
tions and ultra-violet triggered spark gaps have been 
modelled and designed using RELAX3D.7) As an ex
ample, in Fig. 2 is shown a typical slice through a 
121 x 61 x 33 = 243573 point solution of the TRIUMF 
center region; this run took 600 iterations, and 660 sec
onds of CPU time on a DecStation 3100. 

4. STEADY-STATE HEAT CONDUCTION 

There are two classes of problems that RELAX3D 
can deal with for steady state heat conduction. 

One, in which the thermal conductivity k is constant 
throughout the volume, represented by the Poisson equa
tion,13) 

82t 82t 82t q"I(X, y, z) 
8x2 + 8y2 + 8z2 = - k ' (3) 

where t(x, y, z) is the temperature and qlll(X, y, z) repre
sents any heat sources or sinks in the volume with typical 
units for q'll and k of W 1m3 and W l(mOK) respectively. 

Two, which solves cases involving no heat sources 
or sinks but where regions with different thermal con
ductivities k are allowed (assuming there is no interface 
resistance) . The boundary conditions between these re
gions are treated analogously to those between regions 
of different permittivity Co 

K 

31 

21-r----

11 
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J 
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Fig. 2. RELAX3D contour plot at I = 118 (radius 
90cm) of 121x61x33 run for TRIUMF center re
gion, showing electric lens formed by cyclotron 
dees. 

61 

As an example of the first case we discuss a simulation 
based on a report l4 ) dealing with proton beam heating of . 
a copper, water-cooled beam probe. In this simulation, 
in addition to taking account of the variation with depth 
of the proton beam energy loss (assuming a negligible 
energy loss in the water cooling ducts) and the resulting 
proton beam radial spread, we allowed for non-uniform 
beam profiles (using a binomial distribution15)) as well as 
the variation of thermal conductivity k with temperature 
t. 

Fig. 3 shows the results of such a 3D simulation for 
a 100/lA beam on a copper probe with cooling ducts 
at 100°C and the beam density p(x, z) assumed to be 
rotationally symmetric of the form: 

(4) 

where 1'2 = x 2 + Z2 and 1'1 is the limiting beam radius 
given by 1'1 = 1'bJ(m + 1)/2 and 1'b is the 2/T nominal 
beam radius. 

5. MAGNITUDE OF ERRORS 

The 7-point relaxation formula for Laplace's equa
tion is formed from a sum of Taylor series expansions for 
the potentials V of the six points at distance h from the 
central point. In this sum all odd-order terms cancel and 
the second-order term h2 V 2V is either zero (Laplace's 
equation) , or h 2 F (Poisson's equation) , leading to a net 
truncation error of order h4. However, when one consid
ers that the potentials at the six outer points will also 
be subject to such a truncation error, it is seen8

) that 
the solution values of the entire system of equations will 
have a total error of order h2 . 

We have demonstrated this h2 error propagation ef
fect by comparing RELAX3D solutions to the exact, an
alytical solution of the following problem: a unit box 
(0 :S x,y,z :S 1) has the bottom and four sides held at 
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CONTOURS 

Fig. 3. Energy loss and temperature distributions 
in median plane (m=4.). 

potential V = 0, while the top has a sinusoidal potential 

Vex, y, 1) = sin(7rX) sin(1ry), (5) 

Inside the box, the exact solution to Laplace's equation 
is16 ) 

We compared the exact solution at the center of the box 
to RELAX3D solutions for a series of progressively finer 
grids, ranging from h = 1/2 (n 3 = 27 points) to h = 
1/96 (n 3 = 912673 points). In each case the iteration 
was carried out until zero residual was reached, i.e. the 
system of equations was satisfied exactly in the context 
of the finite precision of the computed potentials. 

Fitting a power law to the solution errors resulted in 
a clear h2 dependence, as shown by curve (1) of Fig. 4. 
However, as the grid is refined there is an additional 
effect due to machine precision and round-off. By fitting 

an additional term for the bottom of the error curve, we 
found that the total error was of the form Ah 2 + B h -1. 

Tests at other points in the solution domain also revealed 
the same error trend, although the coefficients A and B 
depend on the location in the grid. 

6. HIGHER-ORDER STENCILS 

The 3D relaxation "stencil" described above incor
porates the six nearest neighbours to the central point . 
By including additional neighbouring points and form
ing additional Taylor expansions at these points, one can 
derive relaxation formulae that are more accurate, due 
to strategic cancellation of higher-order terms in the se
ries. Numerous 2D examples of these larger stencils are 
treated in the literature, but the 3D counterparts are 
rarely dealt with. 

One possible extension of the 7-point stencil is to 
include the next-nearest neighbours along each axis, the 
6 points at distance 2h from the central point, to give a 
13-point stencil. The truncation error for this stencil is of 
order h6

. For our investigations, however, we considered 
a more complex stencil consisting of all points whose · 
array indices differ from those of the central point by 
at most ±1. This includes the central point , 6 points 
at distance h 12 points at distance V2h and 8 poin.ts 
at distance .j3h, resulting in a stencil with 27 points as 
shown in Fig. 1(b). This stencil was implemented as a 
special option for the Laplace equation in RELAX3D. 

Deriving the relaxation formula for such a stencil is a 
non-trivial task. For example, while a detailed derivation 
of the relaxation formula for the 2D, 9-point (square) 
stencil is given in one recent book,3) the 3D, 27-point 
stencil is considered only in passing. 

Using the program Mathematica, R . Balden17) has 
studied this type of problem and has recently found the 
optimum relaxation formula for the 3D, 27-point stencil 
of Fig. l(b) which has a truncation error of V(h8 ): 

v;* = 21 '" Vijk ~ '" Vijk 2 '" Vijk V(h8) 
a 32 ~ 6 + 32 L...J 12 + 32 L...J 8 + 

d=h d=V2h d=V3h 

where Va· is the potential at the central point and the 
averages are taken over the points at distance h, V2h, 
and V3h from it. 

By an argument similar to that for the 7-point case, 
one can surmise from the V( h8

) truncation error that 
the net error in the solution values would be V(h 6 ). To 
confirm this, we again performed runs for the sinusoidal 
potential problem described in the previous section . As 
shown by curve (2) of Fig . 4, the error decreases as h6 

until the effects of machine precision (32 bits) cause an 
increasing trend as in curve (1) . Fitting an additional 
term for these effects revealed a l/h 2 dependence instead 
of the 1/h dependence seen with the 7-point stencil. Also 
shown in this figure are the results of the same 27-point 
computations done in double precision (64 bits), which 
effectively eliminates the precision component of the er-
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Fig. 4. Error in solution using different stencils: 
(1) 7-point, (2) 27-point, (3) 27-point double pre-
CISlOn. 

ror and illustrates the extremely high accuracy that can 
be obtained with this stencil. 

Even in single precision, it is seen that for a given 
grid spacing one can achieve a significant improvement 
in accuracy by using the 27-point stencil. Of course, the 
larger stencil requires more cpu time per iteration, but 
the presence of the additional neighbouring points in the 
calculation tends to accelerate the convergence process. 
For the example shown in Fig. 4, we compared the net 
cpu time required to achieve a fully-converged solution 
(zero residual) at various grid spacings, and found that 
the 27-point stencil requires only about 50% more cpu 
time than the 7-point stencil on the same grid. 

7. CONCLUSION 

RELAX3D continues to be a useful and effective 
program for a variety of problems, of which some exam
ples have been shown. Tests of the program show that 
the errors in the solution exhibit the expected trends as 
the grid is refined, and that errors can be reduced to 
negligible proportions by the use of higher-order stencils 
coupled with higher machine precision. 

Recent upgrades to the program include the ad
dition of polar grids and support for new graph
ics output devices including X Window displays and 
PostScript printers. The code, formerly available only 
on VAX/VMS systems, has been ported to DECStations 
running ULTRIX, allowing one to take advantage of the 
high performance of these RISC systems. Now that the 
code has been adapted to one UNIX environment, im
plementing it on other UNIX-based platforms should be 
straightforward. The continuing trend offaster, more af
fordable computing hardware is expected to assure RE
LAX3D's future and even widen its scope of applicability. 
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